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ABSTRACT

Multi-temporal DInSAR processing techniques aim at monitoring millimetric displacements through periodic detection
of vertical movements of the earth surface, on either point or distributed scatterers. Many such techniques benefit from
the availability of a set of SAR acquisitions which is completely connected through suitable interferometric pairs.
Moreover, many of the above methods require as a pre-processing step the co-registration of long series of SAR images
to sub-pixel accuracy. Automation of this processing step is highly desirable for effective applications to surface
displacement monitoring.

In this paper an approach to determine the best procedure to connect multi-temporal InNSAR datasets is investigated.

The method consists in adopting an a priori measure of image interferogram quality, and then build a minimum
spanning tree (MST) connecting all the image points in the space determined by the spatial and temporal baselines.

As a priori measure, a natural choice is that of coherence. We model spatial decorrelation as mainly due to the
wavenumber shift effect, and temporal decorrelation as a combination of a seasonal effect plus a decrease of coherence
with time. Various examples of MSTs computed using different parameters for these models are shown. Results on a
real multi-temporal DInSAR dataset are reported and evaluations of both processing efficiency as well as final data
quality are presented.

Experimental tests and results are provided with reference to an ERS-1/2 dataset over the Italian landslide site of
Caramanico Terme, involved in the ESA AO3-313 project.

1 INTRODUCTION

In the last years it has been shown that interferometric processing of multi-temporal stacks of SAR images can improve
the capability of microwave sensors to estimate ground displacements [1, 2, 3]. Among the most important applications
of this approach is the monitoring of millimetric surface movements related to natural hazards such as earthquakes,
landslides, subsidences, etc. The displacement information is extracted from the temporal sampling of the differential
interferometric phase of a series of interferograms, obtained from the SAR images forming the stack. Many such
approaches benefit from the availability of a completely connected set of interferograms, since, whenever this condition
is not achieved, a priori assumptions have to be imposed on the temporal trend of the displacements [2, 4]. The usual
criterion for the selection of suitable pairs is that of having a sufficient level of interferometric coherence, which is a
quantitative measure of the reliability of the interferometric phase. Since InSAR coherence generally degrades as the
temporal and orbital separation of the two SAR acquisition increases, most approaches relying on the estimation of the
interferometric phase through “conventional” InSAR processing favour the formation of InSAR pairs made of images
with small orbital and/or temporal separation. Other multi-temporal InSAR approaches exploit the peculiar
characteristics of point targets, whose radar backscattering is practically insensitive to temporal or spatial separation
between SAR images.

In both the types of application, there are also two conflicting aspects of the pre-processing phase that must be taken
into account, namely the huge computational load and the high accuracy requirements. A typical multi-temporal SAR
dataset is composed of several tens of radar images (for example, in the case of the ERS satellites, data archives of the
order of 100 images on a given frame/track location are available); for each selected image pair, several pre-processing
steps (co-registration, interferogram generation, flat earth phase removal, etc.) have to be performed. The quality
requirements for these pre-processing steps are generally high; for instance, co-registration accuracy for InSAR
applications must be of the order of a tenth of a pixel; flat-earth removal has to rely on accurate orbital modelling to
avoid long-wavelength errors. This time-consuming work can be optimized by reducing the user intervention, by means
of an automated implementation of the aforementioned steps.

If interferometric pairs are chosen unsuitably, strong decorrelation effects may force the user to interact often with the
processing chain, especially in the co-registration step, to preserve the results accuracy. Moreover, in applications on
rural, heavily-vegetated, or generally un-urbanised areas, temporal decorrelation can often completely preclude co-
registration at sub-pixel accuracy for some image pairs.
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In the literature, several strategies for multiple SAR image coupling are mentioned, which use various minimization
criteria to reduce decorrelation effects between the images forming each InSAR pair. For instance, in the Permanent
Scatterers technique [1], the co-registration problem is mentioned as one of the most critical steps; in the absence of
better criteria, the (single) master can be chosen as the “mass center” of the cloud of points representing the images in
the Euclidean 2-D space defined by the spatial and temporal baselines. Then, all other images are co-registered to this
single master. In other multi-temporal InSAR processing techniques, the possibility of a stepwise co-registration and
DInSAR processing to minimize decorrelation is mentioned [2, 3]. In [5], a formal definition of the two approaches
(single-master vs. step-wise, or “cascaded”) is given, although only the temporal baseline is minimised in the stepwise
implementation. In all these works, the observation that both spatial and temporal decorrelation increase with
increasing baseline values is used in an empirical way.

In this paper, a possible approach to determine the best coupling strategy for multi-temporal InSAR datasets is
investigated. We use the coherence as a model for the expected quality of InSAR pairs. We introduce a simple a priori
modeling of the physical origin of spatial and temporal decorrelation. Then, we set up a completely connected set of
image pairs, selecting “close” pairs as those satisfying a criterion of maximization of the model coherence. In such a
pairing structure, every image is included in at least an interferogram, and is therefore linked to at least another image.
This structure, which constitutes a tree, allows to easily transfer interferometric parameters across the whole image
stack (e.g. co-registration coefficients, or detected displacement), thus enabling applications of various multi-temporal
DInSAR phase processing techniques based either on point or distributed targets.

We show results of applications of the methodology to a real dataset, both in terms of automation in the co-registration
process, and in the overall interferometric quality of the resulting interferogram stack.

2  PROBLEM FORMULATION

For demonstration purposes, we refer in the following to the pre-processing phase of a given stack of SAR acquisitions,
and in particular to the co-registration step, although the problem formulation can be used as a general framework for
the formation and processing of InSAR image pairs.

2.1  Best path selection

Let us suppose to have a stack of N SAR images. The aim is to perform the co-registration and then resample the
images, so as to dispose of a new stack of images resampled in a unique geometry. For typical sizes of the image stacks,
i.e. several tens of images, it is unpractical to consider the entire number of possible combinations. Instead, co-
registration could be attempted between suitable image pairs. Parameters for resampling, once successfully computed,
can be transferred from image to image so that in the end all data are resampled to the geometry of one single
acquisition. This single “master” image can be supposed to be chosen according to some criterion, although in the
following it is shown that this choice is not critical.

We can represent the images as N points in the 2-D space defined by the geometrical baselines, bo(7), and temporal
baselines b/(i), i = 1, ..., N, and connect any couple of points by arcs. A graph is then defined as the set of the points
(nodes) and of the arcs: G = {G,, G,}. The baselines are defined in some reference frame, e.g. with respect to the orbital
position and date of a reference image. The problem is then to find the best path connecting all the images. Translating
into the graph theory language, we are looking for a rooted spanning tree of the graph, which satisfies some
requirements concerning the optimisation of the InSAR processing.

A tree (or a connected graph without cycles) is a graph in which any two nodes are connected by a single path. A tree
with N nodes has N—1 arcs. A spanning tree of a graph is a sub-graph containing all the nodes [6]. A rooted tree is a
tree in which a root node has been defined. In fact, in a rooted directed out-tree the unique path in the tree from the root
to any other node is a direct path and for each node a unique predecessor node can be identified. Given a graph, many
rooted spanning trees can be defined.

Therefore, in our case, we have to select a tree between all the possible ones. The criterion for selecting the best rooted
spanning tree (BRST) has to match the requirements for a successful processing step for each of the selected pairs. In
general, the BRST will be the one that ensures the shortest connection between successive points according to some
distance measure.

Let us associate to each arc between nodes 7 and ;j a distance d(i, j) (or cost) defined as a generic function of the spatial
and temporal baselines:

d (i, j)= f[b, ()., ()., (D),b,(j)]- )

The length of the spanning tree is the sum of the costs of its arcs. The BRST, consisting of the nodes and arcs subsets
{T,, T,}, can be built up through the following algorithm:



. Create a set G, containing all the arcs of the graph;

. Select a root node (master image) and create the set 7, containing only this node;

. Create a set G, containing all the nodes of the graph except the root;

. Find the arc a with the optimum distance which connects a node in 7, with a node n in G,;;
. Move a from G, to the new set T, and n from G, to T},;

. Loop the steps 4 and 5 on the elements of G, until the cardinality of G, is zero.
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The above procedure coincides in fact with Prim’s algorithm [7], and ensures that, given the node n(i), the arc a(i, j)
exists in T, and that it connects n(i) to its “nearest neighbour”, then satisfying the requirement of the optimal
connection. It can be shown that the BRST is also the minimum spanning tree (MST). Prim’s algorithm can be run in a
time which is O(m + n log n), where m is the number of arcs and # is the number of nodes. It can be shown [8] that the
MST is unique if the distances d(i, j) are unique. This is verified in all practical cases, since the probability of having
two images with exactly the same temporal and spatial baseline with respect to a third one is negligible. This means that
the MST does not depend on the choice of the root tree, and therefore the choice of the initial “master” image in the list
is not critical for the technique.

2.2 Optimisation criteria

In eq. (1), the distance d(i, j) is defined in terms of the spatial and temporal baselines of images i and j. The key step in
the algorithm building the image tree is the minimization of this distance.

The function d(i, j) should be set to operate on normalized quantities, to avoid inconsistencies. We exploit the
normalization properties of the coherence to derive an a-dimensional definition of the distance to be minimised. In
doing this, we use a simple a-priori modelling of both the spatial and temporal baseline decorrelation.

Spatial decorrelation is generally due to the so-called wavenumber shift effect [9]. Correlation due to wavenumber
spectral identity is usually modelled as a linear decreasing function of the spatial (perpendicular) baseline, from 1 to 0.
The zero correlation value is reached when the baseline reaches a critical value, defined as the value at which the
spectra of the two SAR images are completely disjoint. Formally,

b, (i—j .
AGSACHE {1 -|i—j)qm (£5), @
8
where H(*) is the unitary step function, bgcrit is the critical baseline value, equal to about 1100 m for the ERS satellites,
and b,(i — j) indicates the relative baseline between images i and j, i.e. b (i — j) = by(i) — be(j). In practice, for realistic
estimation, effects such as the coherence estimation bias should be taken into account; however, to our purpose of
simple a-priori modelling for coherence optimization, this is equivalent to selecting a lower critical baseline value.
Modelling of the temporal decorrelation is much more difficult. In this case, no general model exists for the temporal
decay of interferometric correlation, since a wealth of electromagnetic scattering mechanisms and surface phenomena
are responsible of the observed coherence of a given InSAR pair. Different models of decorrelation are used for forests
[10, 117, crops [12], or urban environments [13].
We make some simple working hypotheses, and consider here only two main empirical observations related to temporal
decorrelation: one is the fact that coherence between any two SAR acquisitions is generally seen to decrease as a
function of their temporal separation, with a trend which can often be associated with a negative exponential [14]; the
other is that, in general, image pairs containing acquisitions performed in the cold season show higher coherence than
pairs formed between images acquired in the warmer period of the year. In other words, two winter images may show
higher coherence and then result in better co-registration performance than two summer images with the same temporal
distance. This seasonal effect is usually associated with vegetation growth, and is typical of rural landscapes in
temperate climates such as those found in Southern Europe.
Based on these considerations, the following measure is used here for the temporal coherence:

v (i,0) =y, D0, (). (i, /)
= {1 -w, (i) [dos’ {—b’ (IA)b_ bus ﬂ}} E{l -w, (/) [dos’ {—b’ (jA)b_ bes 7Ti|} EXp{——V)’ (i~ J)q @

A A Ab

e

where the two seasonal contributions (}4) are supposed to be periodical functions (squared cosines) with a 1-year period,
bt is a relative yearly reference for the seasonal effect (say Ol January), and Ab, is the period for temporal
decorrelation, for which we have used the value of 365.242199 days, while b/7) and b(j) are baselines calculated with
respect to a certain fixed reference in time. The temporal contribution is written as a negative exponential function of
the relative baseline b,(i — j), with a decay constant Ab.. The seasonal contribution is modulated by weights wy, which
control their impact on the overall coherence estimate.

With these expressions for the two contributions, the distance to be minimised can be written as:
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where J; is given by (2) and ) by (3).
It should be stressed that the formulas shown above are not an attempt to accurately model the spatial and temporal
behaviour of InSAR coherence; they rather represent an a priori guess on the performances of the considered InNSAR
processing step (co-registration, displacement estimation, etc.) as a function of their spatial and temporal separation.

3  RESULTS

3.1  Dataset description and parameter choice

A series of 33 ERS-2 SAR images was used to test the approach described above. The images are acquired over central
Italy, and include the city of Sulmona and an area affected by landslide phenomena, around the urban center of
Caramanico Terme. The approach described above was used to build several connected trees for this image stack. In
Figure 1, four MST plots obtained by applying the algorithm described with different parameters for the definition of
the distance function are shown. The first example, shown in the top-left graph, is obtained with a value of spatial
critical baseline of 1100 m, and a decay constant for the temporal exponential factor of only 1 day. In this case, since
temporal decorrelation is supposed to occur at a very fast rate, no pair shows baselines short enough; therefore, the most
effective approach is to co-register all images to a unique master. In this case, such master image has been chosen as the
“mass center” of the spatial and temporal baselines. The criterion is used here only in an operational way to choose one
image out of N, since, from the point of view of the distance definition with these parameters, all MSTs are equivalent
(i.e. have infinite length), whatever the choice of the master. In the second example, at the top right, the temporal decay
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Figure 1. Examples of MSTs obtained with different parameters for the coherence model in eq. (4). The parameter values are shown
at the top of each figure. In all cases, w, = 0.5 has been used. The periodic component has in all cases a period of 1 year. The color of
each segment encodes a measure of the quality of the co-registration step for that InSAR pair. The adopted merit figure is the fraction
of co-registration patches exhibiting a degree of correlation greater than a certain threshold (0.4 in this particular case). Processing is
performed with DORIS InSAR software.



constant of the coherence has been changed to 30 days. In this situation, short temporal baselines are privileged with
respect to the spatial ones, and therefore the selected MST follows mainly the temporal sequence, with only a few
exceptions (i.e. image numbers 9, 20, and 27). The third case (bottom left) has been obtained supposing a temporal
decay constant of 300 days. In this case, images are supposed to maintain coherence over longer time spans (which
could be the case, e.g. on urban environments); consequently, the effect of the seasonal part of the temporal coherence
is relatively stronger, so that “winter” images are privileged and are therefore connected to many other acquisitions. In
the last example, the spatial critical baseline has been lowered to 300 m. This forces the MST algorithm to favour short
spatial baselines, as can be seen in the bottom-right plot.

3.2 Performance evaluation

The above-mentioned MST approaches have been applied to the actual co-registration of the experimental SAR image
dataset. The DORIS software has been used for the image processing [15]. Co-registration of an InSAR pair in DORIS
is performed by computing the amplitude correlation between the two images on a certain number of image patches.
Wherever the peak correlation values exceeds a certain threshold, the estimated shifts are used to fit a 2-D warp model
of the slave image onto the master.

The first evaluation has been made to test the level of automation of the co-registration process, which can be evaluated
by computing the relative number of image patches which give a sufficient correlation value in the co-registration
process of each pair, and can therefore be used to fit the warp model. This quantity is coded in the color of each arc
represented in Figure 1. Work is in progress to test the actual final quality of the co-registration operation, also taking
into account the error propagation due to the transfer of the co-registration parameters along the image stack.

It can be seen that the general quality measure for the co-registration process increases progressively passing from the
top-left, to the bottom-right plot. In particular, the last plot shows the greatest number of pairs with high percentages of
“successful” co-registration patches.

It should be noted that the a priori model of interferogram quality expressed in (4) is related to the phase coherence,
whereas the parameter used for the co-registration evaluation in the preceding graphs is the amplitude correlation.
However, at least for high values of both quantities, they should agree qualitatively [16, 17].

Another evaluation of the performances of the selected MSTs has been done by using the sample co-registered stacks to
locate the permanent scatterer candidates (PSC). This procedure requires as a preliminary step the relative calibration of
the image amplitudes [1]. The calibration constants have been computed by using the stepwise approach (i.e. “partial”
calibration constants have been computed for the different image pairs and then transferred to the master) with the four
MSTs shown in Figure 1. The number of PSC found using the four MSTs, for several amplitude stability thresholds (see
[1] for details) are shown in Figure 2. It can be seen that for higher threshold values, the three MSTs with a geometry
different from the “single master” show consistent
improvement in the PSC detection. The MST
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Results on a real multi-temporal DInSAR dataset on a difficult landslide site show some interesting effects of different
MST choices on the co-registration and final InSAR quality of the data stacks. In particular, distance measures
favouring spatial, temporal or seasonal baselines have been tested. It is found that, on the test dataset, image stacks
obtained through MSTs favouring short spatial baselines give better co-registration performances, and also lead to
increased numbers of detected candidate stable scatterers when used for amplitude stability thresholding, with respect to
a classical “single-master” approach. Awareness of the expected INSAR performance of image pairs, through suitable
selection of a guess distance measure to be optimized, could lead to improvements in the operational applicability of
multi-temporal InSAR to real sites.

Further work is in progress to better validate the approach and the coherence model adopted, as a function of land
cover, scene and environmental conditions.
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