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ABSTRACT

When analyzing a stack of radar images using persis-
tent scatterer techniques, one of the major limitations
that temporal unwrapping methods have is that they fre-
quently do not take advantage of the information pro-
vided by the rest of the detected scatterers. Here, we pro-
pose to use this information in two different ways. First,
with an iterative method that utilizes the estimations from
previous runs to constrain the solution using Bayesian
inference. By doing so, solutions given by local max-
ima can be avoided. Second, we estimate the variance of
the observations from the phase variability of the pixels
around the PS in question. These variances are then used
to weight the observations.

The method is first validated using simulated data. Then,
we applied it to a small area in southern Netherlands and
compare with conventional unwrapping methods (e.g.
periodogram and bootstrapping). The method shows a
decrease in the number of rejected arcs after statistical
testing. It also reduces the spatial variability of the esti-
mations and renders a smooth solution.

Spatially smooth estimations are , in principle, logic since
the unknown parameters (deformation rates and heights)
are usually spatially correlated and the uncorrelated part
is normally small. However, it can happen that in the
selection process included pixels that are not truly PS ,
i.e. we committed type II errors. These wrongly selected
pixels whose phase contain mostly noise will have a so-
lution artificially assigned that is similar to the surround-
ings and which makes it difficult to reject for further anal-
ysis. Other methods to detect these pixels should be used
which estimates the noise of individual time series.

Key words: Persistent scatterer ; InNSAR; temporal phase
unwrapping.

1. INTRODUCTION

Phase unwrapping is the most crucial step in parame-
ter estimation from time series of interferometric phases.

Several methods have already been proposed such as pe-
riododogram (Ferretti et al. 2001) or integer least-squares
estimator (Kampes & Hanssen 2004). However, they
methods frequently focused the temporal characteristics
of the arcs connecting two points. New algorithms have
already been explored which do employ this information
in the estimation of the spatial coherence, which is used
to weight the observations, (De Zan & Rocca 2005).
Here, we investigate how to include this information pro-
vided by all detected scatterers for parameter estimation
from interferometric time series. We propose to use it
in two subsequent ways. First, in noise estimation from
which we calculate the variance of single PS in an inter-
ferogram. Second, and most importantly, to optimize the
solution search using Bayesian inference.

We applied this concept to both simulated and real data
and compared the results with previously developed al-
gorithms. To do so, we made use of the PS framework
of DePSI (Delft PSI method) (Ketelaar 2008). On the
whole, DePSI consists of establishing first an initial net-
work with the most coherent PS and estimating the pa-
rameters of interest per arc, atmosphere among others.
Then, the arcs are submitted to statistical test, such as clo-
sures errors for outlier removal (van Leijen et al. 2006).
Once the atmosphere is removed, the rest of the PS are
integrated to the initial network and the parameters esti-
mated. These are also subject to outlier rejection.

These tests allows to measure the efficiency of an algo-
rithm because it detects unwrapping errors. We use the
numbers of detected outliers and unwrapping errors re-
ported by this test to compare it with two of the most
widely employed algorithms, periodogram (Ferretti et al.
2001) and bootstrapping, which is a simplification of in-
teger least-squares estimator (Kampes & Hanssen 2004).

2. METHOD

We investigate how to improve phase unwrapping in two
different manners. First, by estimating the variances of
the observations that will be used to weight the obser-
vations. Then, we employ Bayesian inference to con-
strained the solutions.



2.1. Spatial variance

To estimate the noise of the observations (the phase of a
PS in an interferogram) we start from two assumptions.
First, persistent scatterers are not completely isolated, i.e.
some of the surrounding pixels are also persistent. Sec-
ond, interferometric phases are ergodic, i.e. spatial and
ensemble averages are equivalent. Consequently, we are
assuming that the noise of a given PS can be characterized
using the rest of PS around. Notice also that our defini-
tion of PS is a scatterer whose signal to noise ratio is low,
which means that information can be extracted from the
phases despite of the noise.

At this stage, the initial selection of the PS was already
done and and the rest of the pixels removed. The method
for estimating the variance, which is based onHooper
(2006) with the difference that we obtain the variance of
an arc instead of a single PS, is as follows. We select
the PS that lie at a distance shorter than the atmospheric
decorrelation distance, i.e. ~ 800 m, with respect to the
pixel in question (j). After that, we calculate the complex
average of the near PS and subtracted from their complex
values. Finally, the estimated standard deviation of one
pixel, &5, is calculated from the remaining phases, r;,
which should contain mostly noise:
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where 7" is the noise of the m*" PS close j and N is the
total number of near PS.

However, since InSAR methodologies give relative mea-
surements, we are interested in finding the variance of
an arc, which represents double phase differences. Ap-
plying the propagation law of covariances we obtain the
variance of the arc spanned two PS, which are denoted
with the subscripts ¢ and j:
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where A is the design matrix of the double differences,
A =[1,-1], and Q,, -, is the variance-covariance ma-
trix of the vectors 7; and r;. Equation 2 can also be writ-
ten in a simpler form:
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C}; is the covariance between 7; and r;, the off-diagonal
element of the symmetric matrix @, . Notice that, 7,
is a vector containing the estimated noise of the PS near
j. Therefore, the covariance is calculated between two
vectors, r; and r;.

If no scatterers are found at a short distance the variance
is estimated as suggested by (Kampes 2006). It employs
the residues of the estimation of some selected arcs to
compute one variance per interferogram.

2.2. Phase unwrapping using Bayesian inference

We introduce Bayesian inference in the estimation of the
parameters of interest from the wrapped phases. We as-
sume that DEM error H, velocity V' and master atmo-
sphere, M and noise are the only contribution to the
phase of an arc.

For a given arc ij, we search the value of H;;, V;; and
M;; that maximizes the conditional probability:
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where qﬁé‘l (with £ = 1,...,N) are the interferometric
phases of the arc ¢j in N interferograms. For the sake
of simplicity, we drop the subscript referring to an arc
and change it to indicate now interferogram number (q&fi
becomes ¢y,).

In this algorithm, we apply the maximum-likelihood es-
timator, then the problem can be stated as follows:

[H,V,M] = argmax [pdf(H,V, M | ¢1,...,6n5)], (5)

where pdf stands for probability density function.

Using Bayesian theory, pdf(H,V, M | ¢1, ..., ¢n) can be
written as follows:

where X is the vector of unknowns X = {H,V,M}.
Since the denominator in eq. (6) is independent of H , V'
or M, it will be ignored.

We assumed that the phase differences between the PS
forming an arc are Gaussian distributed. In principle,
this is reasonable for short arcs i.e. maximum length of
~ 2.5 km. Therefore, the first term on the right-hand side
of eq. (6) is given by:

1
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where ¢ = & — &, and
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@ is the vector of observations [¢1, .., ¢x] and the corre-
sponding expected value E{®} = ®¢ = [¢}, .., #%]. In
this case, ¢! is given by:
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where B’ is the perpendicular baseline of interferogram
1 with respect to the master image, A the wavelength, R
the distance from the satellite to the scatter, 6 the look-
ing angle, and Bfemp the temporal baseline with respect
to master time.

In addition to that, (¢ is the variance covariance ma-
trix of the observations, i.e. interferometric double dif-
ferences, which are assumed to be independent. Con-
sequently, Q¢ is a diagonal matrix whose diagonal el-
ements are obtained applying eq. (3) in each interfero-
gram. In single master stack processing, this is equiv-
alent of assuming that the noise is mostly produced by
geometrical and temporal decorrelation, which is in prin-
ciple valid for short arcs (low atmospheric contribution)
and low thermal noise.

The second term numerator of eq. (6) can be obtained
using a priori information, e.g. from leveling or SRTM
measurements, (Eineder & Adam 2005). However, this
can be extremely difficult for parameters other than
heights. Therefore, we propose to derive this informa-
tion from the technology that we have more at hand, i.e.
radar interferometry.

This is in fact, the most relevant part of the algorithm:
The incorporation and estimation of the pdf of the param-
eters of interest. We propose to compute it in an iterative
manner. Initially, we assume a boxcar or rect function
which is 1 inside the search space and 0 outside, for each
of the pdf’s of the unknowns. The limits of search space
are based on a priory knowledge. Once the solutions are
found for each arc we use this information to build the
pdf of the unknowns. These are incorporated in eq. (6)
assuming they are independent:

pdf(H, V, M) = pdf(H) pdf(V) pdf(M).  (10)

The derivation of the pdf’s on the right-hand side of eq.
10 is obtained from the histogram of the solutions with
the bins centered at an initial coarse grid. The histogram
should be normalized by the total amount of observations.
We also applied a smoothing window to avoid peaks
which could be produced because a limited number of
measurements (arcs). The value of the pdf’s in a fine grid
is computed by interpolation. Currently, pdf(H, V, M)
is calculated globally using the solutions given by the
arcs of the initial network, which contains the most reli-
able PS. Then, during the densification step of the DePSI
method, the individual pdf’s are updated locally, within a
grid cell whose size can change from 4002 to 800? m2.
Other methods for calculating local pdf’s are currently
under investigation.
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3. VALIDATION AND RESULTS

We validate the method in two ways. First using
simulated data, where we compared known values with
calculated solutions. Second, we tested the method
with actual interferograms and measured the amount of
accepted arcs after statistical tests.

3.1. Simulated data

We created 20 synthetic interferograms whose phase con-
tained atmosphere, DEM error, and Gaussian distributed
noise.

The atmosphere was reproduced from isotropic 2 dimen-
sional fractal surfaces with a power law behavior which
corresponds with the [-2/3, -8/3, -5/3] power law, for
short, medium and large distance respectively, (Hanssen
2001). The DEM error was simulated assuming a Gaus-
sian pdf (Eineder & Adam 2005) with standard deviation
of 5 meters and zero mean.

Figure 1 displays the estimated solution for the DEM er-
ror against the simulated value. Figure 1A shows that
there are four points that were unwrapped incorrectly.
These were corrected after including the pdf of the ini-
tial solutions of DEM error using eq. 6. This is shown
in fig. 1B. We also computed more iterations, but no im-
provements were found.
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Figure 1. Estimated versus actual simulated DEM error.
A) First run, pdf(X) is a boxcar function, B) Second run,

with an updated pdf(X).

3.2. Real Data

We applied the method to a time series of ERS1/2 images
acquired over the Netherlands. We selected a small area
including the city of Sittard in the Dutch province of Lim-
burg, in southern Netherlands. The region is affected by
an interesting uplifting phenomena due to water recov-
ery in abandoned coal mines. In the area we processed,
which is 15x10 km? wide, there are at least three differ-
ent deformation modes: stable areas, and two coal mines
uplifting with different velocities, see fig. 4.

The test consist of comparing the number of accepted arcs
after outlier rejection with other methods. In principle,



the test is very strict and if an arc is finally accepted is
because it is very likely to be correctly unwrapped. Apart
from that, no extra thresholding was included.

Table 1. Number of arcs belonging to the first order net-
work (total number of arcs 2051) that were correctly un-
wrapped, for the spatial variance method and for VCE
(Kampes 2006 ).

Spatial variance =~ VCE

1st network (2051 arcs)
Accepted arcs 1883 1850
Accept rate 91.8% 90.2%

3.2.1. Spatial variance

We calculated the standard deviation of an arc as ex-
plained in section 2.1. The results are plot against the
temporal and perpendicular baseline in fig. 2. As ex-
pected, we found that the variance increase with time and
perpendicular distance, both with respect to the master
image. This is due to temporal and geometrical decorre-
lation, respectively.

We also compared the number of accepted arcs using our
approach, i.e. spatial variance, with the number obtained
using the Variance Component Estimation (VCE) pro-
posed by Kampes (2006). This method calculates a pos-
teriori variance from the residues of the estimations of
the initial network. In order to have a fair comparison,
we employed in both cases the Bayesian approach. The
weight assigned to the observations was equal to the in-
verse of the variance, Q;l in eq. (7). The results shows
that the number of accepted arcs was 1883 for spatial
variance. However, we obtained 1850 employing VCE,
from a total of 2051 in both cases. This is summarized
in table 1. Based on that numbers, we concluded that the
variance seems to be correctly estimated. Therefore, the
noise of a PS is well characterized by the rest of near PS,
at least for our study area, which is highly urbanized.
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Figure 2. Estimated standard deviation for the arcs used
in the initial network (6). (A) & plotted against perpen-
dicular distance between acquisitions B, . (B) & plotted
against time difference between acquisitions Biep,.

3.2.2. Bayesian unwrapping

We compare the results of our method with the ones ob-
tained by bootstrapping and periodogram in two different
ways. First, using the number of PS that were accepted by
the statistical tests. Second, by inspecting the estimated
rates. In the last case, all pixels initially selected based
on the coherence were output, i.e. no statistical test was
carried out.

Comparison using statistical tests. In the Delft imple-
mentation of PSI (DePSI) (van Leijen et al. 2006) we ini-
tially build a first order network with the most coherent
PS. The arcs forming the network are adjusted to a com-
mon reference and tested for outlier detection. The goal
of this process is to remove wrongly unwrapped arcs. Af-
ter this is finished, a second order network is created by
connecting the rest of the PS to the initial network in three
different points. We use those three arcs to decide if a
given PS is correctly unwrapped.

From the number of accepted arcs, we found that
Bayesian unwrapping performs the best for both, the first
order network and all selected PS, with 91.8% and 17.6%
accept rate, respectively, compared to 89.7% and 15.2%
of bootstrapping and 85.8% and 14.5% of periodogram.
The results are summarized in table 2.

Comparison using estimated rates. We estimated de-
formation rates, and also height differences and master at-
mosphere, for all points that were initially selected based
on coherence without applying outlier rejection tests. The
results of the rates are displayed in fig. 4. The area
marked with a blue triangle was used as reference. The
initial search space for the velocities was from -35 cm/yr
to +35 cm/yr for the arcs, but after adjusting them to
a reference the solutions can be larger. It can be seen
that the image with less spatial noise corresponds to the
Bayesian method (fig. 4A). We also plot the estimates
of periodogram and bootstrapping methods against the
results obtained by our approach in fig. 3B and C, re-
spectively. In principle, if the estimations given by any
method were the same the values should lie on a diagonal
line. Effectively, we see that most of the values form a
line in figs. 3B and C, but some do not. Hence, differ-
ent solutions were found by the Bayesian method and the
other two techniques. The major differences are grouped
in three parts of the plot. They correspond to the three
modes of deformation velocities, also visible in the his-
togram in fig. 3A. The reason is due to the pdf(X) we use
in eq. 6.

The introduction of the term pdf(X) can affect the esti-
mations in two ways. First, if the PS in question contains
information despite the noise, pdf(X) will help to find
the right solution by avoiding a local maxima of eq. 7.
Second, if the point is completely noisy eq. 7 does not
play a roll in the estimations and the solution is given my
the maximum of pdf(X'). This carries the danger of as-
signing an artificial estimate to the PS in question. Never-
theless, we believe that figs. 3B and C are due to the first



Table 2. Number of PS correctly unwrapped and cor-
responding success rate for the methods bootstrapping,
Bayesian and periodogram. The second row included
only the arcs selected for the first order network (total
number of arcs 2051). The third row show the results
for all PS that were initially selected (total number of PS
28704).

Bayesian Boot.  Period.
1st network (2051 arcs)
Accepted arcs 1883 1840 1760
Accept rate 91.8% 89.7% 85.8%
Selected PS (total 28704)
Accepted PS 5047 4373 4175
Accept rate 17.6% 152% 14.5%

reason, — pdf(X) avoid local maxima —, because those
pixels were initially selected based on their low noise, i.e.
high coherence.

Apart from that, it must be said that although we em-
ployed initially the same search space for all cases, the
method bootstrapping treats it differently. The limits
are not fixed but flexible. Therefore, a solution can be
searched outside the initial boundaries. This explains the
noisy texture of figs. 4B and 3C.

4. SUMMARY AND CONCLUSION

We have developed a new unwrapping algorithm that
uses the first estimated solutions of the PS with low noise
to constrained the final estimations. This information was
included in the process through Bayesian inference. We
also computed the variance of each observation and use
them as weight in the estimations. We found that using
the spatial variance approach the number of rejected arcs
was smaller when compared with VCE (Kampes 2006),
which proofs that the noise was correctly estimated.
Thus, we concluded that the variability of the phase can
be well characterized using PS which are near by. This
means that a persistent scatterer decorrelates similar
to those ones lying closed by, at least for our study
area, which is highly urbanized. In addition to that,
the variance behaves as expected, i.e. it increases with
temporal and perpendicular baselines due to temporal
and geometrical decorrelation.

The Bayesian unwrapping method we developed shows
an considerable increase on the arcs acceptance rate
when compared with bootstrapping and periodogram.
The reason is that we included extra information (the
solutions of the most stable PS) which is not used by the
other two methods. A decrease of unwrapping errors was
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Figure 3. (A) histogram of the deformation estimated
using Bayesian approach. (B) and (C) plot the de-
formation estimated by periodogram, and bootstrap-
ping,respectively, against the Bayesian solutions.

also found with synthetic data.

Currently, the algorithm estimates a global initial pdf
using the arcs of the initial network. Then, the pdf is
updated locally by including the PS inside the grid cell
that is being processed. This last step has however a
minor influence. Therefore, other methods are currently
being investigated, for example, using kriging for local
pdf estimations (Goovaerts 1997).

Despite the advantages, there are two drawbacks that
are worth mentioning. First, the processing time in-
creases with respect to the other methods. The Bayesian
approach took about 5 times more. The second disadvan-
tage occurs for the pixels that contained not information,
i.e. their phases represent only noise. For these PS,
the term pdf(¢y,..,én | X) in eq. 6 will not play an
important role an they will be unwrapped following only
pdf(X), and an artificial solution will be given. Despite
the fact that it is very likely that the deformation or
height of the noisy scatterers behaves similar to the rest
of detected PS in a certain area, these objects should be
identified and carefully processed in any further analysis.
The detection of these types of pixels cannot be done any
more based on spatial noise. Other methods that estimate
the noise individually or temporally, must be employed,
e.g. ensemble coherence. Nevertheless, if the initial
selection is accurate enough the number of noisy pixels



should be minimal.
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Figure 4. Estimated velocity. (A) Bayesian method, (B)
bootstrapping, (C) periodogram. Country borders are
displayed in yellow, in black the tectonic faults. The lim-
its of the mine concessions are shown in brown.



