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Abstract—The analysis of radar time series with persistent scat-
terer techniques usually relies on temporal unwrapping, because
phase behavior can be often described by simple models. However,
one of the major limitations of temporal algorithms is that they
do not take advantage of spatially correlated information. Here,
we focus on two types of information that can be spatially esti-
mated, namely, observation precision and the probability density
function of the model parameters. We introduce them in phase
unwrapping using Bayesian theory. We test the proposed method
using simulated data. We also apply them to a small area in the
southern Netherlands and compare with conventional temporal
unwrapping methods.

Index Terms—Persistent scatterer

unwrapping.

InSAR (PSI), phase

I. INTRODUCTION

YNTHETIC aperture radar interferometry (InSAR) tech-

niques use the phase differences of two radar images
acquired over the same area to estimate heights and sur-
face displacements [1]-[3]. However, conventional estimation
methods such as least squares (see for example [4]) can-
not be directly applied to InSAR measurements, because the
observations—phase differences—are wrapped. In this context,
a wrapped phase is the 27-modulus of the absolute (or un-
wrapped) phase ®. The absolute value @ is estimated from the
integer number of cycles a such that

O = ¢+ 27a, with¢ € [—7,7) and a € Z. (D)

This process is known as phase unwrapping. Although the
wrap operation ¢ = W{®} is straightforward, the inverse, i.e.,
estimating the number of cycles a, cannot be solved unless
information is added to the problem, e.g., assuming addi-
tional conditions. In conventional InSAR, the interferograms
are treated individually and phase unwrapping is performed by
integrating wrapped phase gradients in the spatial dimension
under the assumption that the absolute phase difference be-
tween neighboring pixels is generally less than 7 [5]-[7]. This
assumption is here referred to as the continuous-phase criterion.
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The most basic evaluation of the continuous-phase criterion
is performed by summing up the wrapped phase differences
of neighboring pixels in a close loop. Nonzero results are
called residues and indicate a violation of the continuous-phase
criterion. Lines of gradients greater than 7 necessarily run
between residues of opposite signs [8]. In order to perform
phase unwrapping, residues of opposite signs are connected
(unloaded) by minimizing a cost function, e.g., the LP-norm of
the differences between gradients of unwrapped and wrapped
phases, [5]-[7]. The arcs connecting the residues constitute an
obstacle through which phase integration cannot be performed.

Persistent scatterer InNSAR (PSI) techniques are an extension
of InSAR, which are employed to reduce the influence of atmo-
spheric artifacts and decorrelation in the estimation process by
detecting long-term coherent scatterers (persistent scatterers) in
a stack of interferograms [9]—[11]. In PSI methodologies, phase
unwrapping is usually carried out in the time domain. Similarly
to the spatial unwrapping case, the continuous-phase criterion
in this case consist of assuming that the time evolution of the
phases can be described with a model.

The model parameters are obtained by searching the solution
space for the values that minimize a cost function that depends
on the differences between modeled and observed phases.
Based on the assumption that most of the contributions to
the phase, such as atmosphere and deformation, are spatially
correlated, the temporal model can be simplified by taking the
phase differences between pairs of nearby PS [12]. These are
also referred to arcs or double differences. Once unwrapped,
the parameters describing the model and the unwrapped phases
are integrated with respect to a reference. To avoid the propa-
gation of errors in the integration, a combination of temporal
and spatial unwrapping strategies was proposed in [10] and
[13] and referred to as spatio-temporal unwrapping. In these
methods, a redundant network of PS is built. The arcs forming
this network are unwrapped in time. The estimated integer
number of cycles of each arc is then subject to statistical
tests aiming at detecting closure errors. Then, outlier arcs
and PS are removed before integrating spatially to a common
reference.

Although the main tendency in PSI techniques is to per-
form phase unwrapping in time, other strategies where phase
unwrapping is carried out in the spatial domain were also
suggested. The stepwise 3-D algorithm of [14] unwraps the
data first in time. This is not the final result of the unwrapping
process but it is used to constrain the solution in the other two
dimensions, see also [15].

In any case, it is clear that temporal phase unwrapping is a
crucial part of these algorithms. However, this step is performed
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arc-wise and does not take fully advantage of spatially corre-
lated information.

Here, we investigate how to extract spatially two different
types of information with the focus on applying it to aid tempo-
ral phase unwrapping. This information is the phase variance
and the probability density function (pdf) of the parameters
describing the temporal model. The inverse of the phase vari-
ance is used as a weighting factor to reduce the influence of
noisy observations. In addition to that, the estimated pdf of the
parameters of interest is applied in combination with Bayesian
theory to rule out solutions that are not likely based on the
spatial information.

II. PHASE UNWRAPPING METHOD

In this section, we investigate how to estimate spatially the
phase variance of a PS and the pdf of the model parameters
which are assumed to be heights and deformation rates. Then,
we discuss how phase unwrapping can benefit from the results
of these estimates.

The method is tested with simulated data in Section III-A.
In Section III-B, we apply the new approach to real data
and compare the results with previously developed algorithms,
namely, the ensemble coherence maximization method [9], [17]
and the bootstrap estimator [18]-[20]. We use the framework
of DePSI (Delft PSI method) [21] for the validation, where
unwrapped arcs are subject to statistical tests [13]. We use these
tests to measure the performance of our algorithm, in particular
the number of arcs and PS that are not rejected.

A. Phase Variance Estimation

The phase precision is estimated spatially under the as-
sumption that noise variance of a PS can be described from
its surrounding PS, at least in some extent. This assumption
is supported by the fact that coherence, which measures the
degree of correlation between two radar images, is spatially cor-
related. Therefore, we expect different noise levels depending
on location. Furthermore, for the variance estimation process,
we group pixels with regard to their temporal behavior. In
this paper, we say that two PS resemble each other when they
fulfill these two conditions, short distance and similar temporal
stochastics. Only PS that resemble the PS in question are used
for the variance estimation.

The inverse of the estimated variance is used to weight the
observations during phase unwrapping. The incorporation of
the precision in phase unwrapping was already suggested in
[10]. Here, the difference is that we do not assume that all PS
in an interferogram have the same variance and we estimate it
individually i.e., one value per PS per interferogram. In [16], the
observations are weighted with an estimate of the coherence.
Under the assumption of ergodicity, coherence is estimated
spatially using a window of variable size. No distinction be-
tween the pixels inside the window was made. In this paper, we
categorize them based on their temporal behavior.

The proposed method is summarized in the flowchart of
Fig. 1. The variance of PS k in any interferogram i, (67)?, is
calculated from the phase noise estimated for k and for the PS

4607

Estimate phase noise

'

Estimate temporal variance

Y

Select PS based on distance
& temporal variance

JL i=1,.,N

Estimate spatial variance

Normalize spatial variance

Fig. 1. Flowchart of the variance estimation process, where M is the number
of PS and N the number of interferograms. First, the noise and the temporal
variance is estimated for each PS. Second, the variance is estimated spatially
using only PS resembling each other. The final result is normalized assuming
that the mean in time of the spatial variance is equal to the temporal variance.
Thin black arrows indicate loops over PS k or interferograms .

resembling k. This operation is performed per interferogram <.
The magnitude of the signal reflected by a PS (amplitude) is not
included in the calculations for simplification.

The noise of a PS is estimated with a high-pass filter [22].
The spatially correlated terms such as atmosphere, surface
deformation, and residual heights are obtained with bandpass
filtering of the complex signal of surrounding PS.

The high-pass filter is then performed by subtracting the
filtered phase ¢%; . .0q » from the original phase ¢;. The result
contains the non—spafially correlated or non-filtered surface
deformation ( Ii\ISC, .-) and residual heights (Hnsc,x):

d)z - (bgltered,k

—Ar Bi 4
=3 \Rsno ! Dysc e (2
A <Rk sin 6y, Nsc,k + Dnsc ;k) + (bnome,k ()

where

e )\ is the sensor wavelength.

e B! is the perpendicular baseline between master and
acquisition 4.

e R, is the distance from the sensor to PS k.

¢ sin 6} is the sinus of the incidence angle 6.

. ¢;0ise’ « 1s the noise of interferogram 7, which also includes
unmodeled phase.
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Substituting a linear model for non-spatially correlated sur-
face displacements, (2) becomes

d)’lbe - Q%iltcrcd,k

(B | |
= — 7H . Bl V ) i o 3
A <Rk sin 0, NSC.k T Btemp NSC,k) +¢nome,k 3

where Bmmp is the temporal baseline between master and
acquisition ¢ and Vnsc, i is the rate of non-spatially correlated
surface displacements of PS k.

Note that the original method of Hooper ef al. [22] has been
slightly modified to include non-spatially correlated displace-
ments in the noise estimation [23].

Although the estimated noise, and therefore the subsequent
estimation of the variance, depends on the filter settings, the
absolute phase variance is of minor importance. The final goal
of the algorithm is to weight the observations to aid phase
unwrapping. Therefore, the algorithm focuses on estimating the
variance factor that gives the relative weight between observa-
tions rather than on the absolute phase variance itself.

After removing the estimated contribution of non-spatially
correlated residual heights QSNSC p and displacements ngNSC D>

the remaining phase is our estimate of the noise qi)nmse &

noise,k — d)k (bziltered,k - ¢%\TSC,H - qs%\TSC,D 4)
where
'y —4m Bi .
1 =— | —H 5
dNso,H \ (Rk Sin oy NSC,k) (5)
A —47
PNsc.p = 3 (BéempVNsc,k) : (6)

Temporal variability is measured with the variance estimated
in time. For PS £, this operation is given by

A 2
o N ((bfloise,k - ,U/noise,k)
O- . =
time,k z N —1

i=1

)

where NN is the number of interferograms and finoise,i Tepre-
sents the sample mean of éﬁmise, i, €stimated over time
N i .
N noise,
Fmoise, k 2N ®)
We select the PS that lie at short distance with respect to PS

k, and whose temporal variance is similar i.e., if the difference
between the two is less than a threshold &:

Otmer| <Ewithl=1,... m. ©)

The maximum distance used for selecting PS and the thresh-
old £ are obtained, assuming that the temporal variance 62, is
stationary at short distances. We estimate a variogram spatially
[24] where the observations are 62 . and the location is given
by the corresponding PS coordinates. We employ as maximum
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distance twice the estimated range of the variogram (e.g.,
1.5 km) and for the threshold &, its estimated sill (e.g.,
0.05 rad?).

The selected PS are then said to resemble each other, and
their estimated noise is used to compute the variance spatially.
The variance of a generic PS k resembling m PS is given by

A . 2
7 %2
A2 e ( noise,l lunoise,k)
(Uk) - Z m—1

=1

(10)

where ﬂ'ﬁmise’ 1 Tepresents the sample mean calculated spatially
with [ = 1,...,m selected PS

m 73

o Z noise,l
m

=1

(11)

~1
:unoise,k,

This is repeated for all interferograms to build the vector

afmce’ . Whose length is equal to the number of interferograms

&gpacak = [(&ipace7k)2 [ (0/\-51‘\]:/)8.067k>2i| . (12)

Fig. 2 shows the histogram of 6t2ime7 «, obtained from the test
area described in Section III-B. From the histogram, we can
deduce that PS with very high and very low values of 62 _ .
may not have nearby PS, because their number is very limited.
Thus, for PS with low 6t2ime’ i the variance is not estimated
spatially and (67} )? is taken to be constant for all interferograms
and equal to the value of 62 ,. In principle, this assumption
should not influence phase unwrapping of these PS very much
because they are highly stable in time, i.e., 5, ; is low. On
the other hand, for noisy PS (high &fime’ ) With no nearby PS,
(61)? is not calculated at the first instance but computed as the
mean of the variances obtained for the rest of the PS.

We correct aspace «. for the noise particular to k by assuming
that the temporal variance of PS k, &fime’ > represents the
temporal mean of the variance estimated spatially

(C}Ils)z Atzlme k N (13)
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(61)? is our final estimate of the variance of PS £ in interfero-
gram 7, which can also be written in a vector form

ot =1 (o))

with IV the number of interferograms.

In summary, this method first estimates the noise of each
PS. Then, it groups PS depending on distance and tempo-
ral behavior and uses their estimated noise to compute their
variance.

Since our observations are the interferometric phases of an
arc, we are interested in the variance of the differences of pairs
of PS. For a generic arc [k spanning PS £ and [, the estimated
noise variance 67, is obtained from the propagation law of
variances assuming independence

(14)

65 = 67 + 61 (15)

B. Phase Unwrapping Using Bayesian Theory

Bayes’ rule uses the prior probability of some parameters
of interest to estimate the conditional probability of these
parameters given a set of observations. The application of
Bayesian inference to extract information, namely heights, from
interferometric phases was suggested in [25]. However, this
method requires a priori knowledge of the pdf of the parameters
of interest, e.g., heights. A similar approach is here reformu-
lated but with the goal of providing a framework for phase
unwrapping of PS time series. The method also estimates the
pdf needed to apply Bayes’s rule.

Although this is trivially extended to any other model, we
start by assuming that the major contribution to the phase of
arc lk are the height difference between PS k and I (Hy;),
the displacement difference, which is here modeled as a linear
function of time with velocity V;;, and a constant value My
to account for the correlation between interferograms, mainly
produced because they are computed with respect to the same
reference (master) image.

In order to unwrap the phases of arc [k, we search for the
value of Hyy, Vi, and M), that maximizes the conditional pdf

 OIk)

where @ refers to the pdf and (bfk (withi=1,...,N) are the
interferometric phases of arc [k, also referred to as double
differences, of N interferograms. For the sake of clarity, we
drop the subscript referring to the arc from now on and replace
it with interferogram number (¢}, becomes ¢;). Then, the
problem can be stated as follows:

o (Huks Viks M| i, - - - (16)

Using Bayes’ rule, p(H,V, M|¢1, ..., dn) becomes
p(0|X)p(X)
Xl|p) = ——F~—— 18
p(X|¢) o(6) (18)

where ¢ is the vector of phase double differences ¢ =
[¢1,...,¢n] and X is the vector of unknowns X = [H, V, M].
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The denominator in (18) can be ignored because it does not
depend on H, V', or M.

The term (| X) represents the pdf of the difference be-
tween ¢ and its expected value ¢y, which depends on the
model parameters X = [H,V, M|, see (21). Since this differ-
ence e = ¢ — ¢ contains mostly thermal noise and slave at-
mosphere, which is small because phase double differences are
taken between nearby PS, we assume p(¢|X) to be Gaussian-
distributed

1
@@%X)=:Cb~exp(—26TQ¢%> (19)

with

1

Q4 is the variance-covariance (vc) matrix of the observa-
tions, i.e., phase double differences, which are assumed to be
independent. Note that the correlation between interferograms
due to the fact that all are with respect to the same master image
is not included in the vc-matrix but estimated as the constant
term M. Consequently, Q) is a diagonal matrix whose diagonal
elements are the phase variances estimated with the method of
Section II-A. The term ¢, is also a vector [¢Y, ..., #%]. For
interferogram i, the expected phase ¢! is given by

0= (e

H+B!
Rsinf +

temp

5 V>+AL withi=1,..., N.

21

The same nomenclature as in (2) and (3) is used here.

The second term numerator of (18) can be obtained using a
priori information, e.g., from leveling or SRTM measurements
[25]. However, this is often not available for parameters other
than heights. Here, we propose to estimate the pdf of the
parameters of interest of an arc k! from the arcs around it.

1) Estimation of the pdf: The pdf of the parameters of
interest p{ X } is estimated iteratively. Initially, for a given arc
kl, we assume ©{ X } to be a boxcar—or rect function—which
is constant inside a bounded search space and zero outside. The
search space is limited based on a priori knowledge. Then, we
search for the solutions that maximize (18).

In the second iteration, we build the needed pdf from the
estimates obtained for nearby arcs. The initial values obtained
for the arc kl itself are not included in its pdf estimation.

At first instance, we describe the method for only one un-
known e.g., heights H. Then, we extend it to include the other
two, displacement rates V' and a constant M.

We use indicator kriging [24] for estimating the pdf of the
heights of any given arc. This estimate is denoted as ((H ). The
observations of indicator kriging are the estimated heights H.
These values, H , are compared with a chosen list of thresholds
h1 < hy < -+ < hyy. Ata generic arc position py, taken as the
middle point between the PS spanning the arc, we then evaluate

1(p0, hus) = { b 1 Hl(po) < b @2
0, otherwise
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for w=1,2,...,W. This is repeated for all arcs. Then, we
determine an indicator variogram from the 0|1 observations.
This is used to predict the cdf from which the pdf is calculated.
First, [ (po, hw) is estimated at position pg using ordinary
kriging:

I(po, hey) = Zwo,j,wI(Pj,hw) (23)
=

where wy_; ., is the weight of observation I (p;, h,,) evaluated at
po and obtained from the empirical variogram. The term n is the
maximum number of observations used for the interpolation.
Note that j # 0, i.e., the observation at pg is excluded from the
pdf estimation.

The cdf estimated at po, <(po), is then given by

o) = {E(po, ), E(po,ha), - H(po, hic) . 24)

The derivative of ¢ yields the estimated pdf . The spacing
between the thresholds h,, and h,1 used in (22) are usually
coarse. The finer step size is solved by 1-D interpolation at the
required location. Smoothing of ¢ may also be needed.

The same operations can be applied to the rest of the un-
knowns V' and M. Then, ((H, V, M) is obtained assuming the
unknowns are independent

OH, V., M) = (H)p(V)p(M). (25)

III. TESTS AND RESULTS

We tested the method for variance estimation and phase
unwrapping in two ways. First using simulated data, where we
compared known values with estimated solutions. Second, we
applied the method to actual interferograms and measured the
number of accepted arcs after statistical tests.

A. Test With Simulated Data

We created 20 synthetic interferograms whose phase con-
tained atmosphere, height, and Gaussian-distributed noise. To
simulate the effect of decorrelation, we simply assigned differ-
ent noise levels to each interferogram.

The total number of pixels was 3136. The interferogram
size was equivalent to 200 m in azimuth and 500 m in range
direction. All arcs had the same pixel as reference, forming a
starlike network. We considered all pixels as PS and did not
perform any prior selection.

The atmosphere was simulated as isotropic 2-D fractal sur-
faces with a power law behavior which corresponds with the
[—2/3,—8/3,—5/3] power law, for short, medium, and large
distance, respectively [3]. The height was simulated assuming
a Gaussian pdf [25] with standard deviation of 5 m and zero
mean. We begin by testing our method for variance estimation.
Next, we focus on phase unwrapping using Bayesian theory.

1) Spatial Estimation of Phase Variance: To test our method
for phase variance estimation, we first unwrapped the time
series by weighting the phases with the inverse of the estimated
variance. After that, since the actual simulated heights H were
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TABLE 1
NUMBER OF WRONGLY UNWRAPPED PS FROM SIMULATED
INTERFEROGRAMS. TWO CASES ARE COMPARED: WHEN THE WRAPPED
PHASES ARE WEIGHTED WITH THE INVERSE OF THE ESTIMATED
VARIANCE &z, AND WHEN THE PHASES ARE NOT WEIGHTED.
THE TOTAL NUMBER OF PIXELS WAS 3136

Iteration weight =1/ 6% No weight
0 (pdf=boxcar) 397 790
1 (updated pdf) 34 304
2 (updated pdf) 2 186
3 (updated pdf) 0 139

TABLE 1II
NUMBER OF WRONGLY UNWRAPPED PS FOR SIMULATIONS WITH
DIFFERENT NOISE LEVELS (LOW, MEDIUM, AND HIGH), SEE TEXT
FOR EXPLANATION. THE TOTAL NUMBER OF PIXELS WAS 3136

Tteration low noise  medium noise  high noise
0 (pdf=boxcar) 4 397 1129
1 (updated pdf) 0 34 494
2 (updated pdf) 0 2 262
3 (updated pdf) - 0 188

known, the number of wrongly unwrapped PS was calculated.
We then repeated the phase unwrapping operations but in this
case, we did not apply any weight. We compared the number
of unwrapping errors when observations were weighted with
67 with those when the observations were not weighted. For
these two cases, we employed our Bayesian approach for phase
unwrapping which required several iterations for calculating the
pdf of the parameters of interest.

The results are summarized in Table I. The number of
wrongly unwrapped PS after each iteration (updating the pdf)
were always smaller when using the estimated variance than
in the case when the observations were not weighted. Even
more, four iterations proved to be enough to correct all wrongly
unwrapped PS, while in the other case, more iterations were
needed.

2) Bayesian Phase Unwrapping: To test our method for
phase unwrapping, we created three stacks of 20 interfero-
grams each. Different noise levels were assigned to each stack.
The average standard deviation of the stacks were 0.36 rad
(low-noise case), 0.47 rad (medium-noise case), and 1.10 rad
(high-noise case). As before, unwrapping errors were found by
comparing actual heights H with estimated ones H. For all
three interferograms stacks, we started with the same initial
pdf. This was a boxcar that was equal to one within the bounds
—40 m to 440 m and zero outside.

The results are summarized in Table II. They show that for
the low-noise case, only four pixels were wrongly unwrapped
and after the first update of the pdf, all errors were corrected.
More iterations did not alter the results.

For the medium-noise case, the results of Table II are com-
plemented with Fig. 3, where estimated heights are plotted
against the corresponding real solution. In these graphs, cor-
rectly estimated heights should lie on a line with a slope equal to
one, and most of them actually do. Solutions outside the central
cluster represent unwrapping errors. Fig. 3(a) shows estimated
versus real heights when ©(H ) was a boxcar. The initial number
of 397 wrongly unwrapped PS dropped to 34 after a first update
of the pdf. This can also be noticed by comparing Fig. 3(a) and
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(a) figs. 4 and 5
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(b)
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Estimated (H) versus actual value of the simulated height H for the medium-noise stack. The pixel marked with an thin arrow is further studied in Figs. 4

and 5. (a) Results after first estimation run: the initial pdf @(H) was a boxcar function. (b) Results after second estimation run: we employed an estimate of the
pdf ¢(H). (c) Third run, the estimated pdf was updated H(H ). (d) Fourth iteration, ¢(H) was updated once more.
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(b)
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2
<
< o
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~20+ ; ; ; 1
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(a) Wrapped and unwrapped phases of a PS whose height was initially wrongly estimated. (b) The unwrapped phase of the same pixel is corrected by

updating @(H) from a boxcar to the value obtained using indicator kriging. See also Fig. 5. The phase corresponding the pixels real height is also shown, see

legend.

(b). One more iteration reduced again the errors to only two,
see Fig. 3(c). Three updates were required to correct them all as
shown in Fig. 3(d). Finally, for high-noise interferograms also,
major improvements were found after the first iteration. The
number of wrongly unwrapped PS reduced from 1129 to 494,
see Table II. Since the total number of pixels was 3136, this
demonstrates that the algorithm proves to be efficient even if a
third of the estimations are wrong. However, due to high noise,
more than four iterations were needed to correct all the wrongly
unwrapped PS.

For the medium-noise case, we analyzed the results further.
We selected a pixel whose height was initially wrongly esti-
mated and corrected after updating the pdf. The initial estimate
of this pixel was 40.4 m while the true (simulated) solution
was —4.2 m. The corresponding unwrapped phases are plotted
against the perpendicular baseline B, in Fig. 4(a). They are
shown as black triangles. The solid line represents the modeled
phase due to true height (—4.2 m). After estimating ©(H) and
including it in the phase unwrapping process, a new height
of —4.4 m was obtained, very close to the real value. The
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Fig. 5.
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(b)
: : : L —eHlG) | '
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Probabilities of the search space solutions obtained from simulated data. The step search, which was 1 m, created a discrete distribution (a) o(¢|H) is

displayed in black. ((X) is a boxcar, not shown in the figure. In this case, p(H |¢) is equal to p(¢|H) inside the search space. The solution is given by o(¢|H)
maximum value that is at 40.4 m. $(H ), shown in gray, is estimated once all PS are unwrapped. The zoom shows also a local maximum in the neighborhood
of the simulated (true) solution (—4.2 m). (b) ¢(H) is incorporated in the estimations with (18). p(H|¢) is displayed in black. Its maximum value gives a new

solution of —4.4. m, nearer to the simulated height (—4.2 m).

corresponding unwrapped phases are shown in Fig. 4(b) also
as black triangles. The improvement is clear. The differences
between the unwrapped and phase due to height are caused by
simulated noise and atmosphere.

For the same pixel, we also investigated in Fig. 5 how the
maximum likelihood estimator, see (17), performed. In the first
run, ((H) was a boxcar and the solution search was governed
by p(H|®), shown in black in Fig. 5(a). This was maximum
at 40.4 m, therefore the selected solution. The conditional pdf
p(H|¢) also had a local maximum in the neighborhood of
the real solution —4.2 m, marked with a dashed rectangle and
displayed as a zoom-in. The solution was searched in steps of
1 m, which produced a discrete p(H|¢p). Once a maximum
was found, the solution was refined by searching around the
maximum in finer steps.

The estimated pdf ¢(H) is shown in gray in Fig. 5(a). Then,
p(¢|H) was computed applying Bayes’ rule, see (18). The
resulting p(¢|H) is shown in Fig. 5(b). From this, we obtained
the new corrected solution of —4.4 m.

From the simulations, we conclude that ambiguities esti-
mated erroneously can be corrected using our algorithm.

B. Test With Real Data

We applied our methods for variance estimation and phase
unwrapping to a time series of ERS1/2 images acquired over
the Netherlands. We selected a small area in the southern
Netherlands that was affected by motion due to water rebound
in abandoned coal mines. The crop we analyzed was 15 km x
10 km wide and there were at least three different deformation
modes, stable areas and two abandoned mines causing uplifting
with different velocities.

In the DePSI [13], [21], a first-order network is built with the
most coherent PS. The arcs forming the network are adjusted
to a common reference and tested for outlier rejection [26].
The goal of this process is to remove spatially inconsistent
arcs. Then, a second-order network is created by connecting
the rest of the PS to the initial network at three different loca-
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Fig. 6. Mean value of the estimated standard deviation for the arcs used in
the initial network (&) plotted versus B and Btemp. The size of the circle
depends on the standard deviation.

tions. These three arcs are unwrapped in time and integrated
with respect to the initial common reference. Therefore, each
second-order network PS has three independent solutions. PS
with inconsistent—different—solutions are rejected.

1) Spatial Estimation of Phase Variance: We calculated the
standard deviation of an arc as explained in Section II-A.
The results are plotted against the temporal and perpendicular
baseline in Fig. 6, where the area of the circles scales with
the standard deviation. As expected, the variance increased
with time and perpendicular baselines due to temporal and
geometrical decorrelation, respectively.

From a total of 2051, the results showed that the number
of accepted arcs was 1909 for our method. We compared this
number with the results obtained using the variance component
estimation (VCE) method proposed in [10], see Table III.
This method calculates a posterior variance from the residuals
(observed minus modeled phases) of the initial network. The
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TABLE III
NUMBER OF FIRST-ORDER NETWORK ARCS AND PS ACCEPTED AFTER TESTS FOR THE PROPOSED METHOD (BAYES), BOOTSTRAP ESTIMATOR (BOOT.)
AND COHERENCE MAXIMIZATION (PERIOD.). THE OBSERVATIONS WERE ALSO WEIGHTED WITH THE INVERSE OF THE VARIANCE, WHICH WAS
ESTIMATED FROM THE METHOD HERE PROPOSED (WEIGHT = 1/67) AND EMPLOYING THE VCE METHOD OF [10], (WEIGHT = 1/VCE).
FOR THE COHERENCE MAXIMIZATION METHOD, WE DID NOT WEIGHT THE OBSERVATIONS

Bayes (weight=1/63)

Bayes (weight=1/VCE)

Boot. (weight=1/VCE)  Period. (No weight)

1st network (Total 2051 arcs)

Accepted arcs 1909 1896 1876 1849
Selected PS (Total 28704)
Accepted PS 5442 5383 4141 3660

number of accepted PS using VCE as weight was 1896. In
both cases, we used the Bayesian approach to unwrap the
arcs. We unwrapped the second-order network PS in the same
manner. The results show that if we use as weight, the variance
estimated spatially the number of total accepted PS is 5442
and when using the variance estimated from 5383. Although
the differences are not high, the proposed method for variance
estimation performed better in terms of accepted arcs and PS.

2) Bayesian Phase Unwrapping: We compared the results
of our phase unwrapping method with those obtained by
the bootstrap estimator and ensemble coherence maximization
methods. This was performed in two ways. First, we compared
the number of PS that were accepted by the statistical tests.
Second, we inspected the estimated rates of all selected PS.

a) Comparison using statistical tests: We started by un-
wrapping the first-order network. The second-order network PS
were unwrapped by connecting them to the first-order network
at three different locations. The number of first-order network
arcs that survived the test is different for each unwrapping
method. Therefore, in order to have a fair comparison, we
unwrapped the second-order network using the same first-order
network for all methods. Table III summarizes the results of
the statistical tests applied to each unwrapping method. The
number of accepted arcs shows that our approach performed
the best for both, first- and second-order networks. The method
here proposed performs the best with 5442 compare with 4141
obtained with the bootstrap estimator and 3660 of the ensemble
coherence maximization. Our new method also performed well
when the observations were weighted with variance estimated
with VCE method of [10].

b) Comparison using estimated rates: We also compared
the deformation rates estimated with the proposed method with
the values obtained using the bootstrap estimator and ensemble
coherence maximization methods. The model also included
height and master contribution but they are not here discussed.
We employed the same initial search space for all cases. The
initial search space for the velocities was restricted to the
interval from —17.5 mm/yr to +17.5 mm/yr.

The results of the rates from all three methods are displayed
in Fig. 7. After integrating the solutions with respect to a
common reference PS, velocity values can be outside the initial
search space. From visual inspection of Fig. 7, we see that
the image with the least spatial noise corresponds to our new
method shown in Fig. 7(a).

The estimates of the bootstrap estimator and ensemble co-
herence maximization method are plotted against the results

Fig. 7. Surface deformation rates estimated with (a) the method here pro-
posed, (b) bootstrap estimator, and (c) ensemble coherence maximization.
Black boxes show zooms of some of the areas where the differences between
the methods are the greatest, after visual inspection.

obtained by our new approach in Fig. 8(b) and (c), respectively.
If the estimates given by each method were the same, the values
would lie on a diagonal line with slope one.

Most of the values form a line in Fig. 8(b) and (c) but some do
not. Hence, different solutions were found by our method and
the other two. The major differences are grouped in three parts
of the plot. They correspond to the three modes of deformation
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Fig. 8. (a) Histogram of the deformation rates estimated using the method
here proposed (Bayes). (b) Rates estimated by bootstrap estimator (boot) versus
our method (Bayes). (c) Rates estimated by ensemble coherence maximization
(periodogram) versus our method (Bayes).

velocities, also visible in the histogram in Fig. 8(a). This shows
the influence of ((X) in the estimation process.

The introduction of {(X) can affect the estimations in two
ways. First, if the PS in question contains significant signal
despite the noise, {(X) will help to find the right solution by
avoiding other maxima of p(¢|H), see (18). An example of
this case is shown in Fig. 5, already discussed in Section III-A.
Second, if the PS is completely noisy, the p(¢|H ) plays almost
no role in the estimations because it is expected to be uniform.
Then, the solution is given by the maximum of ((X). Although
we believe that is very likely than the PS in question behaves as
its nearby PS, the application of (18) with ((X) carries the risk
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of assigning an estimate to the noisy PS that is mostly based on
the surroundings. In any case, these pixels can be then detected
based on spatially consistency tests or estimated noise.

We examined the probability p(¢|H) for some of the PS
that had large differences between the estimation obtained by
our new approach and the other two methods. We found in all
cases that before including {(X ), there were local maxima near
the final solution that was obtained by our method, similar to
the situation shown in Fig. 5. Therefore, we conclude that the
differences between the methods here examined are due to the
first reason—g(X ) avoids wrong maxima—also proved with
the simulations of Section III-A.

IV. SUMMARY AND CONCLUSION

We developed an algorithm that uses the spatial correlation
between PS to improve phase unwrapping. This is done in two
different ways, to calculate spatial variance and to constrain and
weight the search space through Bayesian analysis. We tested
the method using both simulated and real data. The results
show a considerable improvement in the number of correctly
unwrapped pixels in the case of synthetic data. With real data,
the results were compared with those obtained by two other
approaches. Our method shows a significant increase in the
number of accepted arcs and PS after statistical tests, with at
least 1200 more accepted PS than with the other two methods.
From the results obtained from both simulated and real data,
we conclude that the phase variance of PS and the pdf of
their model coefficients can be calculated spatially and phase
unwrapping can benefit from the two.

Despite the advantages, our method have some limitations.
Since it performs spatial estimations, the approach requires
sufficient data density. We also observed that the computational
cost of our method was about three to four times higher than the
other techniques here considered. This additional cost is caused
by the extra spatial operations which are not performed by the
other methods.
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