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ABSTRACT

In the PSIC4 experiment, eight different processing ap-
proaches for time series analysis of InSAR data were ap-
plied to a data set containing an unknown deformation
signal. Results of the experiment showed different spatial
point density for different processing approaches. The re-
sults of most of the groups that participated in the project
suffer from a low spatial density of persistent scatterers
in deforming areas. This lack of PS points in the area
of interest raises the hypothesis of type-I errors (falsely
rejected PS) due to imperfections in the mathematical
model of PS processing. We investigate the contribu-
tion of three different sources of type-I errors: atmo-
spheric phase screen (APS) and orbital errors, non-linear
deformation mechanisms, and azimuthal sub-pixel posi-
tion of the scatterers. We investigate these type-I errors
and present significant improvements in their identifica-
tion by optimization of the mathematical model, leading
to an improved density of persistent scatterers.
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1. INTRODUCTION

In the PSIC4 experiment (Racoules et al., 2006), eight
different processing approaches for time series analysis
of InSAR data were applied to a data set containing an
unknown deformation signal. The experiment proved to
be highly successful, as it clearly indicated that different
approaches resulted in different results, in terms of spa-
tial point density, temporal deformation behavior, phase
ambiguity resolution, and precision and reliability. Re-
sults showed a trade-off between one or more of the above
characteristics, and a high sensitivity to chosen thresh-
old values. As PSIC4 was a blind experiment, where no
a-priori information on the location, magnitude, tempo-
ral behavior, and other characteristics of the deformation
was available, it raises the question to what extent a-priori
information can and should be used in PSI processing. In-
formation, or assumptions, either on temporal or spatial
behavior appear to be very important in the processing

results.

At TU Delft, the results of the PSIC4 study have been
used to evaluate algorithm performance and assess which
approaches are most important to retrieve reliable defor-
mation parameters at a high spatial density. This includes
an analysis of type-I errors (falsely rejected PS) due to
imperfections in the functional model (e.g., imperfection
due to highly non-linear deformation, sub-pixel position
of the scatterer), or in the stochastic model (e.g. imperfec-
tion due to atmospheric errors, orbit errors, geometrical
decorrelation).

In this paper, we investigate the contribution of three dif-
ferent sources of type I errors (functionally and stochas-
tically). We optimized the mathematical model to cope
with these three sources of errors in order to decrease the
false rejection rate of scatterers. The improvements are
based on the Gauss-Markov model (which is used in the
integer least-square and bootstrapping technique), which
allows for the addition of extra parameters in the func-
tional model and for the adoption of the stochastic model
without an increase of the computational effort.

2. MATHEMATICAL FRAMEWORK

The basic concept of our PS processing approach is based
on the mathematical model which can be formulated as:

E{y} = Aa + Bb
D{y} = an

where E{.} is the expectation operator, D{.} the disper-
sion, ¥ the vector of observations, A and B are design
matrices for the integer and real valued parameter vectors
a and b respectively, and @), is the covariance matrix.
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This mathematical model comprises of the functional and
the stochastic model. The functional model describes
the relation between the observations and the unknowns,
whereas the stochastic model represents the stochastic
properties of the observations.

The functional model for a single master stack, where the
master is indicated by a zero and N slave acquisitions are
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where 1) are the phase observations, S is the atmospheric
delay of the master acquisition, H the height, D,, are de-
formation parameters with p = 1... P, X is the radar
wavelength, /3 is the height-to-phase conversion factor,
vy, describes a deformation model as function of temporal
baseline ¢ and (.)* denotes a pseudo-observable needed to
solve for the rank deficiency of the system (Kampes and
Hanssen, 2004). The rank deficiency is caused by the fact
that for each observed phase an ambiguity needs to be es-
timated, together with the parameters of interest. As a re-
sult, the number of unknowns exceeds the number of ob-
servations. With the introduction of pseudo-observables,
the mathematical model is regularized. Without a-priori
knowledge of the topography and deformation in the area,
the pseudo-observations are set to zero. To reduce the in-
fluence of atmospheric delays and orbit errors on the es-
timation process, differential phases between two neigh-
boring PS candidates are used as observations. After un-
wrapping these arcs in time, a spatial testing and unwrap-
ping algorithm is applied to obtain estimates with respect
to a single reference. Additional parameters can easily be
added to the functional model, e.g. sub-pixel position in
azimuth direction to account for Doppler variations in the
acquisitions (Kampes, 2005).

The second part of the mathematical model is the stochas-
tic model, represented by the covariance matrix
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where y* represents the vector of pseudo-observations.
The covariance matrix of the phase observations Q) is
obtained by variance component estimation (VCE) (Teu-
nissen and Amiri-Simkooei, 2006; Kampes, 2005). The
VCE technique estimates the covariance matrix directly
from the data. Hence, the covariance matrix used in the
estimation process is not dependent on a-priori assump-
tions on the quality of the data. After estimation and
subtraction of certain signals, e.g. the atmospheric de-
lay, the VCE algorithm is applied again to update the

)

covariance matrix. The covariance matrix of the pseudo-
observations J,~ contains variances which bound the so-
lution space of the unknowns.

Using least-square estimation with the functional model,
Eq. (2), and the stochastic model, Eq. (3), each phase
double difference between two PS candidates is un-
wrapped in time. The testing criterion for accepting a
scatterer as a PS is the a-posteriori variance factor

TH-1
ot @
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where e is the vector of residuals between the unwrapped
phase and the deformation model and r is the redundancy
in the functional model. A PS candidate is accepted as a
PS when 62 is smaller than 1.0.

3. SOURCES OF TYPE I ERRORS

Any imperfection in the functional model (e.g., imper-
fection due to non-linear deformation, sub-pixel position
of the scatterer) results in larger deviations between ob-
servations and model. As a consequence, these large
residues will result in larger 42 and type-I errors, so the
scatterer will be discarded for further analysis. In or-
der to optimize the mathematical model to handle these
kinds of deficiencies, an extended model with additional
parameters should be used. Using extended functional
models, the number of detected PS can be enlarged, al-
beit at the expense of decreased rank of the estimation
problem. This decreased rank increases the chance on
undetected unwrapping errors, denoted as type-II errors.
Therefore, extended deformation models should only be
applied when necessary.

On the other hand, imperfections in the stochastic model
(Qy) can also cause type I errors. Using a too optimistic
stochastic model results in a larger 62, leading to the
false rejection of a PS. For example, imperfections in the
stochastic model can be due to atmospheric errors, orbit
errors, geometrical decorrelation or sub-pixel position of
the scatterer. In general, there are two approaches to cope
with these kinds of imperfections: 1) adapt the covariance
matrix (adding additional values in entries of @), or 2)
remove the corresponding errors from the observations
(filtering).

In this study we will investigate three sources of type-I
errors: 1) APS and orbit errors 2) Non-linear deforma-
tion model and 3) Azimuthal sub-pixel position of the
scatterer. We optimize the functional and the stochastic
models in order to cope with these three sources of false
rejections.

4. APS INTERPOLATION AND ORBIT ERRORS

In the standard PS-InSAR methodology, the residual sig-
nal of all differential arcs in the initial network is filtered
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Figure 1. a) PSI results from standard PS processing using only kriging interpolation for the mining area in Gardanne,
France (red dashed rectangle). b) PSI result obtained by applying adapted APS estimation with trend and stratification.
Linear deformation rates estimated from the unwrapped time series are shown.

to extract the atmospheric signal per acquisition, see e.g.
Ferretti et al. (2001). Based on the correlation of the at-
mosphere in space and its decorrelation in time, a com-
bined smoothing and interpolation operation using krig-
ing is used to derive the APS (i.e., the atmosphere signal
for the whole scene). After subtraction of the APS from
the original differential phase, the estimation procedure
can be repeated for all pixels. This approach is optimal
for interpolation of the turbulence signal of the atmo-
sphere. However filtered residuals not only contain the
turbulence signal but also orbit errors and vertical stratifi-
cation signal of the atmosphere, see Hanssen (2001). Al-
though differential phases between two neighboring PS
candidates are used as observations in the mathematical
model to reduce orbit error and stratification, these ef-
fects can be a source of error in the final estimation and
cause PS to be falsely rejected especially in areas with
low signal to noise ratio (e.g. non-urban areas with high
non-linear deformation mechanism). Based on this hy-
pothesis we optimized our APS interpolation approach.
Instead of only using a kriging interpolation on filtered
residuals, we used three steps.

1. For each acquisition, detrend the data by fitting a
first order plane to the unwrapped phase and subtract
the estimated trend from the original phase.

2. Estimate vertical atmospheric stratification based on
the linear correlation between topography (DEM)
and stratification signal and subtract it from the de-
trended phase.

3. Interpolate turbulence using kriging on residuals (as

in standard approach).

Consequently, the final estimated APS is a summation
of a trend signal, stratification, and turbulence. Fig. la

shows the detected PS and their displacement rates ob-
tained from standard processing using only kriging in-
terpolation. Fig. 1b visualizes the results after applying
detrending and estimation of stratification. The number
of detected PS in deforming area (red dash rectangle) in-
creased in this case from 1749 applying the standard ap-
proach to 1889 (8% improvement) using detrending and
to 1911 (9% improvement) using detrending and stratifi-
cation estimation. Also some PS are detected close to the
center of subsidence region (white circle in Fig. 1b).

5. NON-LINEAR DEFORMATION MODEL

Because the a-posteriori variance factor 52 is dependent
on the deviation between the observations and the as-
sumed deformation model (usually a linear model), large
residues due to higher order deformation mechanism can
result in type I errors. In other words, persistent scatterers
with more complex displacement histories will not be de-
tected. van Leijen and Hanssen (2007b,a) presented two
strategies to increase the number of detected persistent
scatterers using adaptive deformation models.

The first strategy is based on alternative hypothesis test-
ing during the PSI processing. A sequential scheme is
used to apply and test extended deformation models per
phase double difference, intending to find a model that
sufficiently fits to the data to avoid type-I errors. The
adaption of the deformation model is based on hypothesis
testing. The algorithm is initialized with the selection of
a set of these models. Then, each phase double difference
between two PS candidates is unwrapped in time apply-
ing the sequential scheme of alternative hypothesis test-
ing until a deformation model fits to the data well enough.
A linear model is a good null hypothesis because of the
maximum redundancy in the estimation process. Apply-



Figure 2. a) PSI result using a linear deformation model for the mining area in Gardanne, France (red dash rectangle).
b) Results obtained by applying the sequential hypothesis testing scheme using a linear and a breakpoint model. The
breakpoint was set a-priori at 19 May 1995. c) Result obtained by applying the sequential hypothesis testing scheme
using a linear and a quadratic model. d) Result obtained using integration of the sequential hypothesis testing scheme
and iterative deformation modeling using kriging. Linear deformation rates estimated from the unwrapped time series
are shown.
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Figure 3. a) PSI result from standard PS processing using adapted functional model with azimuthal sub-pixel position for
mining area in Gardanne, France (red dash rectangle). b) PSI result obtained by applying adopted stochastic model for
azimuthal sub-pixel position. Linear deformation rates estimated from the unwrapped time series are shown.
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Figure 4. a) PSI result from adapted mathematical model to optimized APS interpolation, non-linear deformation, and
azimuthal sub-pixel position for mining area in Gardanne, France (red dash rectangle). b) Contribution of different
adaptations in the PS processing. Note that the sum of the three contribution (44%) is not equal to the total improvement

(48%) due to the synergy effect.

ing the sequential scheme of hypothesis testing, a certain
deformation model is accepted when &2 is smaller than
1.0. Otherwise, the next model is tested until the com-
plete set of models is evaluated.

The second method is based on an iterative scheme of de-
formation modeling. After a standard PSI processing un-
der the null hypothesis, that is, applying a linear model,
a deformation model is estimated based on interpolation
(e.g., kriging) from the PS results. The modeled defor-
mation is then subtracted from the original interferomet-
ric phase and the PSI processing is repeated (again us-
ing a linear model). Because the deformation models are
estimated per epoch using the displacement time series,
possible non-linear deformation is modeled as well. As
a result, points which were previously rejected as a PS
due to too large deviations from the model may now be
accepted. Hereby the density of PS improves. Obviously,
this procedure can be repeated iteratively. Note that a
similar procedure is often followed in standard PSI pro-
cessing to remove atmospheric delays and, based on aux-
iliary data, heights.

The results of standard processing using a linear defor-
mation model are shown in Fig. 2a. Fig. 2b shows the
result after applying the sequential testing scheme using
a linear and a breakpoint model. The breakpoint model
is characterized by two subsequent linear models sepa-
rated by an event or breakpoint. In this study, the break-
point is defined a-priori on 19 May 1995, based on the
start of the mining activities. With this model PS are de-
tected in the center of the subsidence region. To enable
visualization, the figure shows linear deformation rates
estimated through the unwrapped time series, even when
the breakpoint model was used for the unwrapping. The
number of detected PS in the deforming area (red dashed
rectangle) increased in this case from 1749 using the lin-

ear model to 2069 (18% improvement). Fig. 2c shows
the result of the sequential testing scheme using a lin-
ear and a quadratic deformation model. In this case, the
number of detected PS in the area of interest increased
1749 to 2116 (20% improvement). Applying iterative de-
formation modeling using kriging interpolation in com-
bination with sequential hypothesis testing (with linear,
breakpoint, and quadratic deformation model) gave the
results which is presented in Fig. 2d. The number of de-
tected PS increased from 1749 to 2155 (23% improve-
ment), confirming the expected increase in PS density.
Importantly, this adaptive approach enabled the detection
of a PS in the center of subsidence region.

6. AZIMUTHAL SUB-PIXEL POSITION

The sub-pixel position of a PS point in azimuth direction
induces an additional phase component in the PSI ob-
servation, especially when there is a large difference be-
tween the Doppler centroid frequency of the master and
slave image. This term is only important for point scat-
terers, since for distributed scatterers the effective phase
center is approximately at center for all pixels. The az-
imuthal sub-pixel position can be estimated as an addi-
tional parameter in the mathematical model based on the
linear relationship with the Doppler difference between
the master and slave image (Kampes, 2005; Marinkovic

et al., 2008) A
™
W = — Al 5)

where v is the satellite velocity, A f9" is the Doppler cen-
teroid difference between master and nth acquisition, and
&, s the sub-pixel position of the PS in azimuth detection.
However, adding this additional parameter to the func-
tional model leads to a decreased rank of the estimation



problem. Moreover, the azimuth sub-pixel position can-
not be estimated with high precision in the case of small
variation of the Doppler frequencies. This suggests treat-
ing this parameter stochastically rather than functionally.
That is, instead of estimating this parameter as a new un-
known, introduce it in the stochastic model. That is, add
extra values to the diagonal elements of the (),;. This ex-
tra value is scaled relative to the Doppler difference of
each interferogram. So observations with higher Doppler
difference have higher variance and so lower weight in
the estimation, leading to smaller 52 and so acceptance
of the PS.

However, both of these adaptions (i.e. adopt functional
model or stochastic model) should be applied only when
it is necessary. Estimation of the azimuthal sub-pixel
position as an extra parameter for all pixels causes that
pixels with small azimuthal sub-pixel position are un-
wrapped with an unnecessary complex model, increasing
the chance of unwrapping errors (type-II errors). On the
other hand, adding this term to the stochastic model for
all pixels results in underestimation of 52, leading to the
false detection of PS (again type-II errors). So both adap-
tions should only be used for pixels with large azimuthal
sub-pixel position. In order to detect these pixels, we
analyzed the residuals (deviation between the observa-
tions and the model) after temporal unwrapping. Looking
at the correlation between residuals and Doppler differ-
ences, we can detect the pixels which show high correla-
tion with Doppler differences. Fig. 5 shows the histogram
of this correlation in a small area in the Gardanne area. It
is clear that these pixels can be classified in two groups:
1) a normal distribution part which contains pixels with
small azimuthal sub-pixel position and also distributed
scatterers with zero mean correlation with Doppler dif-
ferences (red normal bell shape), and 2) pixels outside the
normal bell shape which show correlation with Doppler
differences (red circle). The second group contains pix-
els which we detected for adaption of the mathematical
model for azimuthal sub-pixel position. 83% of these
detected points are rejected in the standard PS approach
without taking the azimuthal sub-pixel position into ac-
count.

For these rejected PS, we adapt the mathematical model
(both functional and stochastic part) and iterated the PS
estimation. Fig. 3a shows the result after iteration of the
PS processing using the adopted functional model with
azimuthal sub-pixel position. The density of PS did in
this case not improve significantly (number of PS in-
creased from 1749 to 1785 (2% improvement)). How-
ever, adding the sub-pixel position term in the stochastic
model results in increased number of PS from 1749 to
1972 in deforming areas (Fig. 3b), that is 12% improve-
ment in density of PS in the area of interest. These re-
sults show that it is better to deal with azimuthal sub-
pixel position stochastically rather than functionally in
this dataset.
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Figure 5. Histogram of correlation between residuals and
Doppler differences.

7. FINAL RESULTS

After evaluating the three mentioned sources of type-I
errors in the Gardanne area, we combined all proposed
approaches together. That is, we applied the following
adaption.

1. Adapted APS interpolation with trend and stratifica-
tion effect.

2. Sequential hypothesis testing scheme using linear,
breakpoint, and quaderatic models.

3. TIterative deformation modeling using kriging.

4. Adapted stochastic model for pixels with azimuthal
sub-pixel position.

Fig. 4a shows the results. The density of PS in the de-
forming area increased significantly from 1749 to 2581,
that is 48% improvement in PS detection capability.
Fig. 4b presents the contribution of the different adap-
tions in PS density in the area of interest. Note that the
sum of the three contribution (44%) is not equal to the to-
tal improvement (48%) due to the synergy effect among
these optimizations. That is, integration of all these adap-
tions acting together improves the results more than ap-
plying the indivisual adaptions.

Improving the PS density in the deforming area results in
better estimation of the final velocity map of the area.
Figs. 6a and b show interpolated velocity maps using
kriging interpolation for the standard PS approach and
the adopted approach respectively. These results show
that the adapted algorithm can better catch the deforma-
tion signal in this mining area.



8. CONCLUSIONS

The results of the PSIC4 study have been used to evalu-
ate algorithm performance and assess which approaches
are most important to retrieve reliable deformation pa-
rameters at a high spatial density. This includes an anal-
ysis of type-I errors (falsely rejected PS) due to imper-
fections in the functional model (e.g., imperfection due
to non-linear deformation, sub-pixel position of the scat-
terer), or in the stochastic model (e.g. imperfection due
to atmospheric errors, orbit errors, geometrical decorre-
lation). We investigate the contribution of three different
sources of type I errors: atmosphere phase screen (APS)
and orbital error, non-linear deformation mechanism, and
azimuthal sub-pixel position of the scatterers and opti-
mized the mathematical model to deal with these errors.
The results show significant improvements in the iden-
tification of these type I errors, leading to improved PS
density in the deforming area. Application of the pro-
posed optimizations shows a 48% increase in the number
of detected PS in the deforming area. This improvement
can significantly improve the final velocity map which is
one of the main products of the PSI technique from an
application point of view.
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