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BACKGROUND

The high spatial resolution of InSAR data allows atmospheric 
delays to be spatially modeled by least-squares collocation 
(LSC). LSC requires a covariance model consistent with data. 
The spectral behavior of atmospheric delays derived by InSAR
data allows the implementation of a stochastic model 
corresponding to the so-called Matérn class of covariance 
functions. The parameters of the power spectrum density 
function (variance, power-law exponent and frequency shift) can 
be estimated in the spectral domain and used for constructing 
the corresponding variance-covariance function in the spatial 
domain. Introducing an additional parameter (shift in frequency 
domain) provides more flexibility in modeling different weather 
conditions. Based on Matérn class covariance functions a new 
covariance function of atmospheric delays has been derived. 

If a spatially distributed trend is not presented in the signal the 
analytical Matérn class covariance function (red) approximates 
very well the empirical covariance function (green). 

SIMULATED SIGNAL

One atmospheric regime (              )
Different weather conditions are simulated by changing the

parameters of PDO. Three different weather conditions have 
been simulated for the regime between 0.25 km and 1.5 km. 
The power  is kept constant and the coefficient P is varying for 3 
weather conditions. The following table and graph show how the 
parameters are changing when the weather conditions are 
varying. It is obvious that both parameters are quite stable (the 
shape of all covariance functions in the graph remains the 
same). The main variation is due to the scaling factor. The 
results show that for 1000 samples for every weather condition 
the normalized empirical and analytical functions converge 
strongly to their average. It can be assumed that the average 
analytical covariance functions represent quite well the average
empirical covariance functions in all weather conditions. Different 
weather conditions will influence only the scale (the variance) of 
the covariance functions. Due to the fact that the signal 
represents a stationary and isotropic stochastic process (without 
a deterministic component)  the solution for all three parameters 
is very stable and converges to the values preliminary assigned.

Mixed atmospheric regime (                                 )
A simulation with a mixed atmospheric regime has been 
performed for different atmospheric conditions. Different values
for P change only the scale of the covariance function. The 
solution for the covariance function parameters is stable and the 
analytical covariance function (magenta) converges to an 
average covariance function (red). The empirical covariance 
function (green) converges to its average (blue) one as well. 
One experiment with around 25000 simulations is shown below.  
It is visible that the average of the analytical model 
approximates quite well the average of the empirical covariance 
model. Those numerical simulations with a mixed atmospheric 
regime shows that if in the real data a trend is not present, the 
derived analytical covariance model is expected to approximate 
the empirical covariance function in a reasonable way. 

REAL DATA EXPERIMENT

Different atmospheric conditions have been considered to test 
the compatibility between the analytical and empirical covariance 
functions. The presence of trend in the real signal causes 
instability in the determination of the parameters of the 
covariance function. To check if the existing trend is the reason 
for instable estimations of the parameters three different 
scenarios are considered. The parameters are determined after 
removing the spectrum of a linear, quadratic and third order 
polynomial trend from the spectrum of the signal. For different 
atmospheric conditions different order of the trend insures stable 
estimations of the parameters of Matern covariance function.  
The following table shows the order of the trend where the first
stable estimation of the parameters appears and the parameters 
of the covariance function.

CONCLUSIONS

• A new analytical covariance function corresponding to the 
spectral representation of Kolmogorov law has been derived, 
based on the Matern class of covariance functions. It will allow 
us to derive the parameters of the covariance function using the
power spectrum density of the signal.
• The simulations with one atmospheric regime show that if a 
trend in the signal is not present, the estimations of the 
parameters are stable and converge to the initial parameters 
used by the simulation procedure.
• For real data the stability of the solution depends on the 
presence of a trend in the signal. The atmospheric signal can be
assumed as stationary and isotropic all over the globe, but over
a limited territory (e.g., one InSAR interferogram) an additional 
‘local trend’ can be presented. In this case the effect of the trend 
on the spectrum of the signal needs to be extracted.
• For a SAR interferogram which will contain not only 
atmospheric delays a possible solution can be in the use of a 
local tropospheric delay model coming from permanent GPS 
stations.

 
Parameters 
 

 
P=100000 

 
P=1000000 

 
P=10000000 
 

α  2.33838 2.37061 2.36075 
β  2.78307 2.78585 2.78360 
var (mm2) 3.3752 33.5934 329.3811 
Φ (mm2) 1898.0 16559.0 177691.5 
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CASE 
 

Order of trend 
 
α  

 
β  
 

 
Φ  
 

A 3 0.1101 1.7520 17.7095 
B 3 0.7775 2.1609 9.4610 
C 1 0.2564 1.3089 1.9612 
D 1 0.3906 1.3515 0.7308 
E 1 0.6267 2.0567 2.6586 
F 1 0.4910 1.9861 6.1600 
G 0 0.1763 18519 11.5358 

 

           PSD                 Covariance function
(green: model, blue: data,  
 yellow: trend)                              (red: data, blue: analytical)     
 
CASE A (no trend removed) 
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CASE A (3rd order polynomial) 
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CASE B (no trend removed) 

10
-2

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

10
2

10
3

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

 
 
CASE B (3rd order polynomial) 
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CASE C (no trend removed) 
       NO SOLUTION 
 

CASE C (1st order polynomial) 
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CASE D (no trend removed) 
      NO SOLUTION 
 

CASE D (1st order polynomial) 
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CASE E (no trend removed) 
      NO SOLUTION 

 
CASE E (1st order polynomial) 
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CASE F (no trend removed) 
      NO SOLUTION 

 
CASE F (1st order polynomial) 
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CASE G (no trend removed) 
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