How to convert (columnar) water vapor, in g/cm², to delay in mm?

$$\delta^z = \prod_{T_s} I \tag{1}$$

where δ^z is the zenith delay in [mm], I is the (columnar) water vapor (a.k.a. integrated precipitable water) in [kg/cm²], and Π_{T_s} is the conversion factor approximated using the surface temperature T_s in [K].¹

As an approximation, we use for I in $[kg/cm^2]$

$$\Pi = 6.5$$
 and $\frac{1}{\Pi} = 0.15$ (2)

and for I in $[g/cm^2]$

$$\Pi = 65$$
 and $\frac{1}{\Pi} = 0.015$ (3)

Conversions (examples)

$\frac{\mathrm{WV}}{\mathrm{g/cm^2}}$	$rac{ m WV}{ m kg/m^2}$	$\begin{array}{c} \rm eq.Liq.Wat.^2 \\ \rm m \end{array}$	delay m	delay mm	phase rad
1	10	0.01	0.065	65	2π 1
0.1	1	0.001	0.007	6.5	
0.015	0.1538	0.000154	0.001	1	
0.154	1.538	0.00154	0.01	10*	
0.431	4.3064	0.004312	0.028	28 (1 fringe)	
0.007	0.6854	0.0006	0.004	4.46	

RH 14-Oct-2003 17:51

¹ See ?) for an approximation of Π_{T_s,T_0,t_D} as function of the mean annual surface temperature for the location, T_0 , and the day of the year, t_D , (?, p.230).
2 height of an equivalent column of liquid water