
Stochastic modeling of time series radar
interferometry

Ramon F. Hanssen
Delft Institute of Earth Observation and Space Systems

Delft University of Technology
Delft, The Netherlands

Email: hanssen@geo.tudelft.nl

Abstract— Quality description and evaluation of InSAR results
is hampered by the fact that the model to derive parameters from
the observations is usually underdetermined. Only using strong,
often rather qualitative, assumptions it is possible to reach unique
solutions. One of the most prominent assumptions is that phase
ambiguity resolution can be treated as a deterministic problem.
In this study, a model formulation is presented that captures the
majority of the assumptions in a mathematical sense, allowing
for adjustment, testing procedures and formal error propagation.
The influence of stochastic ambiguity resolution to the probability
distribution of the estimated parameters is shown.

I. INTRODUCTION

InSAR models to estimate topography or deformation from
either one SAR pair or from time series usually rely on a
number of rather harsh assumptions. Assumptions that are of-
ten encountered, and often not explicitly stated, are that (i) an
interferogram only contains topography, or only deformation,
(ii) that coherence estimators to describe the quality of a single
resolution cell using a spatial or temporal estimation window
are reliable and robust, (iii) that ambiguity resolution (phase
unwrapping) can be treated as a deterministic image or data
processing problem, using heuristic assumptions on maximum
allowable phase gradients, and (iv) that error sources such as
those caused by the atmosphere can be treated in a descriptive,
qualitative way. Even though these assumptions are narrowed
down in the most recent InSAR methods, they are often still
the basis for applied studies.

As a result, quality estimates of the first information-bearing
derived observables are often inadequate. To illustrate this
point, consider the situation of one repeat-pass interferogram,
spanning time interval ∆t and perpendicular baseline B⊥.
Given two randomly selected resolution cells, there are two
relevant parameters; (i) a topographic height difference be-
tween the points and (ii) a differential deformation. Now it
should be possible to express the accuracy and reliability of
these estimated parameters. Although there have been attempts
to derive these quantities, it is in principle impossible to do
so, since the problem is underdetermined, with two principal
parameters and only one (derived) observation. This problem
is often circumvented by assumptions, e.g. that there is no
deformation, or that topography is known. However, there
are a number of other problems involved as well. One of
these problems is that it is often assumed that the phases
are unwrapped, that is, the ambiguities per resolution cell

have been resolved. Until now, this has been treated as a
deterministic image processing problem, a trick that can be
performed in a preprocessing stage. It is clear to realize
that this approach may work, in that it produces intuitively
appealing results, but the simple fact that it is an estimation
problem and that errors in the ambiguity resolution can be
made demonstrates that this stochasticity should be included
in the parameter estimation problem.

In this paper we present a formulation of an alternative
problem formulation in an attempt to formalize potential
assumptions in a stochastic sense. This way, also the a priori
information that may be needed to derive estimates is subject
to hypothesis testing, making precision and reliability claims
more robust.

II. PRIMARY AND DERIVED VARIATES

InSAR measurements are a showcase example of derived
variates or observables. Here we distinguish the primary or
intermediate variates and the ’information-bearing’ variates.

The primary variates are the raw reflected radar pulses,
involving in-phase and quadrature phase observations as a
function of time. After A/D conversion and telemetry, a
(phase-preserving) focusing algorithm is used to create a
single-look complex (SLC) image. Thus, the next intermediate
variates are the I/Q values per resolution cell. Although the
amplitude of these complex values contains information, the
geometric information in the phase is completely masked
by the scattering component of the phase. Creating an in-
terferogram from two SLC images produces complex (in-
terferometric) values at each resolution cell. However, even
these variates are still intermediate since they do not contain
relevant geometric information. For example, total atmospheric
delay adds up to several meters, orbit accuracies are in the
(sub)-decimeter level, and the total number of integer phase
cycles is not known, making (sub)-centimeter precision claims
impossible. The first information-bearing variate is therefore
the phase difference between two interferometric resolution
cells. For repeat-pass interferometry we define the double-
difference observation as the phase difference between two
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positions, differenced in time:
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where the subscripts indicate the pixel positions 1 and 2 and
the superscripts the time of acquisition, t1 = 1, t2 = 2. Ex-
pressing phase observations in cycles, the wrapping operator
W{ζ} = mod (ζ + 1

2 ) − 1
2 = ζ − a, with a ∈ and

W{ζ} ∈ [− 1
2 , 1

2 ) ⊂ . The functional relation between this
variate and the unknown parameters is

E{ϕ12
12} = k1 D + k2 H − a (2)

where

ϕ12
12 is the double-difference observable, expressed in

cycles,
k1 = 2λ−1,
k2 = k1 B⊥ cos−1 θ R−1,
D [m] is the unknown double-difference deformation

vector component in line-of-sight,
H [m] is the unknown topographic height difference

between points 1 and 2, and
a is the unknown double-difference integer cycle am-

biguity [a ∈ ].

and B⊥, θ, R, D, H , and a are short hand notations for B⊥12
12,

θ12
12 , R12

12, D12
12 , H12, and a12

12, respectively. The expectation
operator E{·} implies that the double-difference error sources,
such as decorrelation and atmospheric signal or residual orbital
signal, have zero-expectation. These are further modeled in the
stochastic model, see below.

It is evident that it is mathematically impossible to solve
for the three unknown parameters only from one double-
difference observation. However, this is exactly what is hap-
pening in many of the studies using some form of InSAR
(conventional 2-pass, 3-pass, 2-pass+DEM, Persistent scatterer
interferometry (PSI), interferogram stacks). In most of these
cases, information used for this interpretation and for making
quality statements stems either from the qualitative (visual)
interpretation of the interferogram or data (‘the fringes look
smooth’ or ’the time series fit to the model very well’), or from
a-priori knowledge on the roughness of the topography, the
type of deformation (abruptly or gradual), and the assumption
that the ambiguity resolution is error-free.

The main proposition in this study is that if it is possible to
make a ‘human’ visual interpretation of an interferogram or a
time series it should be possible to capture this in terms of the
mathematical model. In other words, if two pixels would be
randomly selected from an interferogram, it should be possible
to produce best estimates of the parameters of interest and give
an optimal quality description of these parameters, preferably
in terms of its multivariate probability density function (pdf).

III. GAUSS MARKOV MODEL

Here we chose to use the generic Gauss-Markov model as
our starting point. Using eq. (2) we design the functional and

stochastic model in matrix form as

E{

ϕ12

12

d
h


} =


k1 k2 1

1 0 0
0 1 0





D

H
a


 ,

(D,H ∈ )
(a ∈ ) (3)

and

D{

ϕ12

12

d
h


} =


σ2

ϕ

σ2
d

σ2
h


 , (4)

respectively. In this formulation we added pseudo-observations
for double-difference deformation d and height difference
h, short for d12

12 and h12, respectively, and their respective
variances. Note that this model is easy to expand for including
more points and more interferograms, hereby allowing for
all forms of interferometry. The main contribution of this
formulation is that it allows for estimating the best linear
unbiased estimator of the parameter vector, its full variance-
covariance matrix, and even its multi-variate pdf. The fact that
the integer ambiguities are included in the parameter vector
makes the stochastic nature of its estimators explicit.

To be suitable for estimation, one of the main challenges is
now to include all human-visual, a-priori, and image process-
ing information in the model.

A. Adding information to the model

Here we discuss the information contained in the variance
of ϕ12

12 and in the pseudo-observations d, h, and in σ2
d and σ2

h.
To investigate the components responsible for the variance

of the derived variates ϕ12
12, we propagate the influence of the

constituting variates in eq. (1), i.e.,
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where

σ2
φi

j
is the total variance of a phase observation, consisting
of thermal noise, scattering noise and atmospheric
and orbital signal. Therefore this is a very large
number.

σφ1
1,φ2

1
is the covariance at one position (p = 1) between
two times. Here the effect of the coherence plays
the dominant role; a large coherence implies a large
similarity, hence a large covariance.

σφ1
1,φ1

2
is the covariance between two positions at the same
time t = 1. This covariance is mainly dependent
on the atmospheric signal and orbital residual signal,
and is therefore a function of the distance between
the two points.
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Fig. 1. Sketch of covariance function representing distance dependent
covariance at one moment in time. Its shape and magnitude is mainly
dependent of the atmospheric conditions and orbit errors. The value for
|�p2 − �p1| = 0 corresponds with the total atmospheric variability plus the
single point noise (thermal and scattering)

σφ2
1,φ2

2
is the covariance between the two points at time
t = 2. If no a priori information on the weather
situation is available, the same value should be used
as for σφ1

1,φ1
2

σφ1
2,φ2

2
is the covariance between the two times for the sec-
ond point. Again this is a function of the coherence
at that point.

Overall, it is clear from eq. (6) that σ2
φi

j
contains more or

less all error sources, but that the variance of the double-
difference observation σ2

ϕ12
12

can be strongly reduced if the
covariance terms are large as well. Figure 1 demonstrates this.
The variance of the double-difference observation between two
points would be the value of the covariance function for a
zero-distance minus the value at a certain distance ∆p. Short
distances therefore increase the precision of the estimates.

The (initial) value for the pseudo-observation d for the
double-difference deformation between the two points may be
hard to predict, although an a priori model for e.g. subsidence
might be used. However, if no other information is available,
using E{d} = 0 seems a fair choice. Note that this choice
might lead to a biased estimator, but this problem can usually
be solved in an iterative sense.

The variance σ2
d = f(t1, t2, p1, p2) of the pseudo-

observation d includes information available on the deforma-
tion, as a function of the times of the acquisitions and the
positions of the two points. For example, a spatio-temporal
covariance function can be constructed to express the expected
amount of deformation over a time interval ∆t = t2 − t1 and
spatial distance ∆p = |�p2−�p1|. Although this might be easier
for a subsidence signal than for complicated faulting related
to an earthquake, but simple initial models can be improved
iteratively using information from the interferogram and the
initial results.

For the pseudo-observation for the topographic height a
radar-coded a-priori DEM can be used. If no information is
available E{h} = 0 can be used.

The variance σ2
h = f(p1, p2) of the pseudo-observations h
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Fig. 2. Sketch of the different probability distributions. A is an example of
a probability density function for D̂ or Ĥ . B is the probability mass function
for ǎS , and C is the multi-modal probability density function for Ď or Ȟ .

expresses the knowledge of the difference in height between
two points. This is a function of the distance ∆p = |�p2 −
�p1| between the two points, as often height differences are
less well known over longer distances. If no a priori DEM is
available, a fractal dimension and a scale factor could be used
to construct the covariance function as a function of distance.

IV. ADJUSTMENT AND ESTIMATION

Using the model of eqs. (3) and (4) we can now perform a
least-squares adjustment procedure using the combined model
with integer and real-valued parameters. The procedure to
solve the model is divided into three steps [1]. First, the integer
nature of the ambiguity a is discarded, and a standard adjust-
ment is performed. The yields real-valued (float) estimates of
the parameters and their covariance matrix:

D̂

Ĥ
â


 ;


 σ2

D̂
σĤD̂ σâD̂

σD̂Ĥ σ2
Ĥ

σâĤ

σD̂â σĤâ σ2
â


 (7)

In the second step the float ambiguity estimate â is mapped
to the corresponding integer (fixed) ambiguity estimate ǎS =
S(â), where S : → is the mapping operator. There
are several integer estimator that could be chosen to perform
this task. In [2] this problem is discussed in relation to radar
interferometry. Finally, in the third step the fixed ambiguity
estimates are used to correct the float estimates of D and H ,
as in [

Ď
Ȟ

]
=

[
D̂

Ĥ

]
−

[
σâD̂

σâĤ

]
σ2

â(â − ǎS), (8)

to retrieve their final ‘fixed’ estimates,

V. QUALITY ASSESSMENT

It is our goal to determine the quality of the main parameters
of interest D and H , preferably in terms of their probability
density functions. The quality of the fixed solutions Ď and Ȟ
depends on the quality of D̂, Ĥ , and â and on the quality of
the integer estimator ǎS . Therefore, we need the probability
distribution (probability mass function) of the integer estimator
ǎS . Since there are several integer estimators, the probability
distributions of ǎS , and consequently Ď and Ȟ , will be depen-
dent on the estimator chosen. Figure 2 shows what example
probability distributions of the float valued parameters (A),
fixed integer ambiguity parameters (B), and the multi-modal
distribution of the fixed real-valued parameters (C) look like.
It is clear that in this example the likelihood peaks of Ď or Ȟ
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are very close, but the main conclusion remains that in order to
have a proper quality description of the estimated parameters
it is necessary to include the influence of the stochastic integer
ambiguities.

VI. TIME SERIES

Extension of the model defined in eqs. (3) and (4) to accom-
modate either time series of point sets, as in persistent scatterer
interferometry, or to accommodate spatial differences in one
interferogram is relatively straight forward. By estimation of
velocity rates or polynomials the number of parameters can be
reducedFrom a practical point of view, adding more observa-
tions implies an equal increase in ambiguity parameters, which
results in a decreased performance of the algorithm in terms
of speed. Therefore, recursive bootstrapping methods need to
be applied to use results from the previous fixed solutions to
add them to the new ones.

VII. CONCLUSIONS

This study addressed the problem of quality description in
radar interferometry. It is argued that it is possible to include
information that is normally used in qualitative interpretation
in the functional and stochastic model of a Gauss-Markov
parameter estimation formulation. The stochastic nature of the
integer ambiguities is treated similar as other (real-valued)
parameters, leading to a multi-modal probability distribution
of the parameters of interest. The specific shape of the multi-
modal distribution, e.g., the space between the likelihood peaks
and their relative likelihood magnitudes is a measure that could
be used to express the external reliability of the estimated
parameters.
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