IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 1, JANUARY 1999
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Interferometry
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Abstract— Interpolation is required in interferometric syn-
thetic aperture radar (SAR) processing for co-registration of
complex signals. Straightforward system theoretical consid-
erations provide objective figures of merit for interpolators,
such as interferometric decorrelation and phase noise. Theo-
retical and simulation results are given for nearest neighbor,
piecewise linear, four- and six-point cubic convolution, and
truncated sinc kernels.
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I. INTRODUCTION

HE first step in SAR interferogram processing is often

the resampling of one complex SAR image u; to map
it onto a second image us to within an accuracy of about
a tenth of a resolution element.

Although the implementation may be different, resam-

pling can be viewed as consisting of two steps:
1. reconstruction of the continuous signal from its sampled
version by convolution with an interpolation kernel i(z, y);
2. sampling of the reconstructed signal at the new sampling
grid.
This scheme holds even in many cases, where the convolu-
tion [step 1] is not obvious. For example, nearest neighbor
and Lagrange-type interpolation of equidistantly sampled
data can be considered as a convolution with particular
kernels. The choice of the interpolation kernel (especially
its length) requires a tradeoff between interpolation accu-
racy and computational efficiency. This brief communica-
tion shows that straightforward system theoretical consid-
erations give objective criteria for choosing or designing
interpolation kernels for interferometric processing.

II. THEORY OF INTERPOLATION ERRORS

The following analysis starts from the classical Fourier
domain description of interpolation errors in stationary sig-
nals. Often these errors are quantified in terms of an L2
norm. We will instead employ coherence theory for SAR
interferograms [1][2] to predict the effect of interpolation
on interferogram phase quality. Fig. 1 shows [for the one-
dimensional (1-D) case] how the Fourier transform I(f) of
a kernel i(z) acts as a transfer function on the periodically
repeated signal power spectral density |H(f)|?>. The two
classes of errors to be considered are the distortion of the
useful spectral band |f| < B/2, and the insufficient sup-

pression of its replicas |f —nf;l|,., < B/2, where f; is the
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sampling frequency. Hence, the interpolated signal will not
be strictly low-pass limited and the subsequent new sam-
pling creates aliasing terms. If in the resampling process
all interpixel positions are equally probable, the aliasing
terms are superposed incoherently and can be treated as
noise with a signal to noise ratio of:
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In the following we will quantify interpolation errors in
terms of interferogram decorrelation and associated phase
noise. We assume that the original data u; have been sam-
pled at least at the Nyquist rate and that the sampling
distance after resampling is similar to the original one.
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Fig. 1. Fourier transform I(f) of interpolator i(z) acting on the
replicated signal spectrum.

The system model of Fig. 2 is sufficient for our analysis:
consider a perfect and noise free interferometric data pair
of coherence v = 1, before interpolation. Both u; and us
have passed the SAR imaging and processing system de-
scribed by a transfer function H(f). Signal u; additionally
suffers from the interpolation transfer function I(f) and
alias noise n. It can be derived from [1] and [2] that, for
circular Gaussian signals (i.e., for distributed targets), the
coherence of such a system is given by
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These equations are readily extended to two dimensions. If
both H(fy, fy) and I(fs, fy) are separable, we find:

3)

The phase noise resulting from vy < 1 is known to be (in

Y=Yz Vy-
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Fig. 2. System model for evaluating interpolation errors (w is a white
circular Gaussian process.)

the N-Look case):
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and 9 F} is the hypergeometric function.

III. EXAMPLES FOR INTERPOLATORS

The interpolators and their spectra evaluated here are
(assuming unity sample grid distance)[3],[4] as follows.
o Nearest neighbor:

0, |z|> %
@)= rect(@)={ L, o =1
1 |zl < g (©)
I(f) = sinc(f).
o Piecewise linear interpolation:
oy v _ |0, lz| > 1
0= wo={} , fZ1
I(f) = sinc®(f)
 Four-point cubic convolution(a = —1):
(a+2)[zf = (@ + a2 +1, 0<]a| <1
i(z) = alz]® —5alz|® + 8alz| —4a, 1< |z[ <2
0, 2 < |z
I(f) = ﬁ [sinc®(f) — sinc(2f)]
+(fT“)2 [3sinc®(2f) — 2sinc(2f) — sinc(4f)] .
(8)

« Six-point cubic convolution(a = —1,8 = 1):

(a=B+2)zP - (a—B+3)|z]*+1

alz? — (5a — B)|z|* + (8a — 38)|z| — (4o — 28)
Blz|® — 88|z|? + 218|z| — 188

0

i(z) =

(9)
for (0 < |z| < 1), 1 < Jz|] < 2), (2 < |z] < 3), and
(3 < |z|), respectively.

e Truncated sinc

i(x) =
I(f) =

where Si = [(sin(z)/z)dz.

Table I lists the theoretically derived coherence and one-
look phase noise introduced by the first three and the last
of these interpolators for one and two dimensions. ERS
range signal parameters have been used for both dimen-
sions with uniformly weighted spectrum and oversampling
ratio of fs/B = 18.96 MHz/15.5 MHz = 1.223 (in real
systems, azimuth oversampling is slightly higher than in
range), i.e., H(f) = rect(f/B). Often, SAR data are over-

sinc(z)rect(z/L), with L =6,8,16
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Fig. 3. Improvement of 2-D interpolation for oversampled input data
(same oversampling factor in range and azimuth).

sampled by a higher factor before an interferogram is com-
puted, be it either to avoid undersampling of the interfer-
ogram or as a consequence of baseline dependent spectral
shift filtering. In these cases the requirement on the inter-
polator is relaxed. Fig. 3 shows how decorrelation reduces
with oversampling.

IV. EXPERIMENTAL RESULTS

Using uniformly-distributed random generators R;, a 1-
D white circular Gaussian complex signal w is computed
with amplitude |w| = y/—InR;[-] and phase arg(w) =
21 Ry[-]. Low pass filtering yields a correlated random sig-
nal. An oversampling ratio of 12.23 is used to create the
reference signal u, whereas the test signal us is a subsam-
pled version thereof. Using a subsampling ratio of 1/10
reduces the oversampling ratio of the test signal to 1.223
to resemble ERS conditions. The test signal u, is then in-
terpolated using the kernels under investigation, yielding
an estimate 4 of the reference signal. The interpolation
kernels nearest neighbor, piecewise linear, four-point and
siz-point cubic convolution and six-point, eight-point, and
16-point truncated sinc are created using (6)—(10). For ev-
ery kernel the interferometric phase error ¢ = arg[d - u*],
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TABLE 1

320

THEORETICALLY AND SIMULATION DERIVED INFLUENCE OF DIFFERENT 1-D AND 2-D INTERPOLATORS ON INTERFEROGRAM COHERENCE AND

PHASE NOISE (PHASE STANDARD DEVIATION WITHOUT MULTILOOKING)

Interferometric phase [rad]
o

One-Dimensional Two-Dimensional
Coherence Phase std. [deg] || Coherence | Phase std. [deg]
theory | simu | theory | simu theory theory
nearest neighbor || 0.9132 | 0.9042 | 37.4 36.4 0.8345 48.7
piecewise linear || 0.9773 | 0.9757 | 21.4 20.1 0.9551 28.5
4-point cubic convolution || 0.9949 | 0.9946 | 11.3 11.3 0.9898 15.2
6-point cubic convolution — 0.9988 — 5.6 — —
6-point truncated sinc || 0.9975 | 0.9973 8.3 8.2 0.9950 11.2
8-point truncated sinc || 0.9980 | 0.9979 7.4 7.0 0.9961 10.1
16-point truncated sinc || 0.9995 | 0.9995 4.1 3.8 0.9990 5.6
Interferogram phase: nearest neighbor Interferogram phase: piecewise linear
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Fig. 4.

the phase error histogram, the total coherence v, and the
standard deviation of the interferometric phase error o4 are
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Simulated interferograms using four kernels: (a) nearest neighbor, (b) piecewise linear, (c) four-point cubic convolution, and (d)
six-point cubic convolution.

evaluated. Single experiment results of the interferometric
phase error are shown for the first four evaluated kernels
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Fig. 5. Histogram of the phase errors for four kernels: nearest neigh-
bor, piecewise linear, 4-point cubic convolution, and 6-point cubic
convolution.

in Fig. 4. It can be seen that the variation of the interpo-
lated signal decreases considerably as the kernel contains
more sample points. Nevertheless, spurious spikes up to +m
still cause residues in the interferogram. The histogram is
depicted in Fig. 5. The total coherence v and the stan-
dard deviation of the interferometric phase o4 is studied
using averaged values from 500 simulation loops. The re-
sults are given in Table I to allow comparison with the
theoretical findings. Coherence has been estimated as the
sample correlation coefficient of the reference signal u and
the interpolated signal 4. Fig. 6 shows the mean standard
deviation of the phase as a function of the coherence for
the four shortest kernels.
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Fig. 6. Phase standard deviation phase and coherence for four inter-
polation kernels

V. DISCUSSION OF RESULTS

The spurious spikes in the interferogram, as shown in
Fig. 4, appear at those positions in the signal where the
amplitude is extremely low. The signal to noise ratio at
these interpolation points is therefore dominated by the
interpolation noise. This makes a sudden phase jump at
low-amplitude areas likely. Due to the small amplitude,
multi-looking suppresses these spikes and considerably di-
minishes the phase noise.

The cubic spline interpolation kernels used here can be
referred to as parametric cubic convolution (PCC)[4]. The
parameters a and (3 for the four- and six-point kernels cho-
sen here have proved to be close to optimal for this partic-
ular configuration. Optimization for specific purposes can
be performed by evaluating (1).

A comparison of cubic splines and truncated sincs under-
lines the necessity of careful interpolator design: note that
the cubic splines used here are special cases of weighted
truncated sincs. The six-point cubic convolution kernel
showed better quality than an eight-point unweighted trun-
cated sinc.

Interpolation errors are due to the aliasing of repeated
signal spectra and the cutoff of the signal spectra’s corners.
Hence, the choice of an optimal interpolator will always
depend on the correlation properties of the signal. How-
ever, a subjective recommendation can be given for ERS
conditions, where temporal decorrelation dominates the in-
terferogram quality anyway. In these cases, a four-point
cubic convolution with @ = —1 proved to be sufficient.
For high resolution applications of high coherence single-
pass interferometers, in which multilooking is not desirable,
longer interpolation kernels, like the optimized six-point
cubic convolution presented here, are recommended.
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