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ABSTRACT

Radar interferometry has evolved significantly during the late 80’s and in the 90’s. The applications of the technique have
broadened, starting from topographic mapping using single-pass, dual antenna, airborne configurations, to deformation
mapping and atmospheric water vapor mapping using multi-pass spaceborne configurations. The full geodetic validation
of the technique, however, requires proper modeling of the dispersion of the data, i.e., the full variance covariance matrix.
Although single-look and multi-look phase statistics have been discussed by many authors, parameter estimation using a
Gauss-Markov model also requires the stochastic modeling of the covariance between resolution cells.

In this paper, we will present a first stochastic model which takes into account how spatial (de)correlation can be accounted
for. Spatial decorrelation caused by propagation delay heterogeneities is especially important when analyzing deformation
processes over long time intervals. In these situations, the interpretation of the interferometric phase is often hampered
by temporal decorrelation, which produces isolated relatively coherent patches surrounded by areas where coherence is
lost entirely.

Spatial correlation functions are derived using interferogram sets in which the propagation delay variability could be
modeled. Although this variability seems to be non-stationary at these scales, it appears to have scaling and power-law
properties. Using spatial structure functions, these properties are translated to the variance-covariance matrix. Special
emphasis is on the factor which needs to be applied to scale the variances. Localized coherent areas might often be
sufficient to provide a first estimate for this factor, even in severely decorrelated interferograms.

This procedure results in an improved description of radar interferometry, described as a parameter estimation problem.
It is shown how such considerations might lead to the assessment whether radar interferometry is a suitable tool for, e.g.,
specific deformation problems. The method can be applied for different geophysical deformation problems, caused by
ground water extraction, gas exploration and volcanic deformation.

1 INTRODUCTION For n observations, @}, will be an n x n matrix. For m
unknown parameters, we find the redundancy r = n — m.
The significance of the Gauss-Markov model is the sheer
amount of adjustment and hypothesis testing routines
which are readily available for problems formulated in this
form. In this discussion, we won’t discuss this in more de-
tail. Instead, our goal is to find the best way to write our

problem in the form of equation (2) and (3).

For geodetic analysis of measurements, the most impor-
tant issue is the construction of a mathematical model
which relates the observations to the unknown parameters.
Using the Delft method, we divide such a mathematical
model in two parts: the functional model and the stochas-
tic model. Written as a standard Gauss-Markov model,

the (linearized) functional model is written as:
1.1 Problem formulation for radar inter-

y= Az +¢; 1

= ferometry

where y and ¢ are the stochastic observations and errors, Until to date, the functional model for radar interferome-

respectively, A is the design matrix which relates the obser-
vations to the parameters x, which are assumed to be de-
terministic. If we expect that the errors ¢ have a zero-mean
distribution, the expectation E{.} of the observations is:

E{g} = Azx. (2)

The stochastic model describes the dispersion, or second
moment, of the observations:

Diy} = Qy; 3)

where @y is the full variance-covariance matrix. If the ob-
servations are not correlated, @, will be a diagonal matrix.
Correlations between observations result in a full-matrix.

try described the relation between the observations y: the
(unwrapped) phase of a resolution cell, and the parame-
ters x. In the repeat-pass configuration, phase variability
is considered to be caused by topographic height z; or
deformation xz4. The variance of the observations 05 is
derived from the local coherence in the interferogram.

Several problems appear in this formulation of the func-
tional and stochastic model. First, every observed phase Y,
in resolution cell ¢ is connected with two unknown param-
eters: xp and xz4. This gives n observations and 2n param-
eters, and therefore the problem is underdetermined. Sec-
ond, it has been shown by several authors that atmospheric
delay variation influences the observed phase considerably,
and can cause up to 5 phase cycles errors. Inclusion of the
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atmospheric delay z, in the functional model raises the
amount of unknown parameters to 3n. A third problem is
concerned with phase unwrapping. All currently used algo-
rithms use heuristic assumptions of a maximally allowable
phase gradient. Although this assumption might hold for a
large number of situations, it is doomed to fail in, e.g., fore-
shortening regions and regions with strong deformation. In
order to write the functional model in more robust terms,
it is necessary to include the unknown integer ambiguity of
the phase k, with ¢ = ¢f, + k27, as an unknown param-
eter. In this expression, ¢y, is the so-called fractional or
observed phase, and k27 is the fixed integer phase. This
approach raises the amount of unknown parameters to 4n,
and the problem is even more underdetermined.

The solution to the first problem is rather pragmatic. For
deformation measurements, it is often assumed that the
topographic height is known in advance. For topographic
height measurements, it is assumed that no deformation
occurred between the two acquisitions. A more advanced
solution to the redundancy problem is the use of several
interferograms: [ interferograms increase the number of
observations to In, whereas the topgraphic height x5 does
not change.

The second problem, atmospheric signal, is more difficult
to eliminate, as every new interferogram introduces a new
set of atmospheric parameters x,. Therefore, an increase in
the number of interferograms will simultaneously increase
the number of parameters. As long as no useful (high-
resolution, quantitative) atmospheric data are available
from other sources, attempts to resolve the atmospheric pa-
rameters in the functional model will be difficult and rather
ad hoc. An alternative solution is presented here, where
we move the atmospheric uncertainties from the functional
to the stochastic model. The following paragraphs will ex-
pand on this idea.

For completeness, we remark that we will leave the problem
of the integer phase ambiguities outside the scope of this
discussion. For now, we assume that phase unwrapping
yields sufficiently accurate results.

1.2 Parametrization of spatial correlation

This paper will summarize ideas on the use of structure
functions, power spectra, and covariance analysis. We pro-
pose to include the spatial variation of the atmospheric
signal in the stochastic model. In an interferogram, the
functional model relates the observations (phase values for
every pixel) to the unknown parameters (e.g., the param-
eters of a deformation model). The stochastic model ap-
points a variance for every single pixel and covariances be-
tween any combination of two pixels. The determination of
the variance values is well described in literature, see, e.g.,
Just and Bamler (1994). Covariance values, however, have
rarely been discussed in the field of radar interferometry.
Partially this is due to the fact that the type and magni-
tude of atmospheric signal has long been underestimated.

In section 2, we discuss how the power spectrum and the
structure function are related. The structure function will
be related to the correlation function and covariance func-
tion in section 4

2 POWER SPECTRUM AND STRUCTURE
FUNCTION

2.1 Definitions

There is a specific class of signals ¢(x) with a power-law
behavior, i.e., their power spectrum P, (f) has the follow-

ing form (Agnew 1992):

Py (f) = Po(f/fo)" (4)

In this equation, f is some (spatial or temporal) frequency,
Py and fo are normalizing constants, and v is the spectral
indezx; often —3 < v < —1. Here we show the relationship
between this power-law signal (z), and its structure func-
tion, which behaves as (Monin and Yaglom 1975; Agnew
1992)

D,(R) = CV%R’(”“). (5)
0

This relation and the definition of the structure coefficient
C,, is derived in section 10.

The structure function D, (R) of ¢(z) is defined as
Dy (R) =< [p(z + R) — p()]* >, (6)

where < - > denotes the ensemble average over all realiza-
tions. Hence, we can also denote (6) using the expectation
E notation

Dy(R) = E{lp(z + R) — ¢(2)"}. (7)

We can consider the behavior of a new signal ¢r(x) defined
by

¢r(z) = ¢(z + R) — ¢(), (8)

which is the variation of x over a fixed interval R. The
relevance of this substitution is that while ¢(x) might be
non-stationary (when v < —1, see section 3), ¢r(x) is often
stationary. This implies that the expectation E{p(z)} can
differ considerably depending on the position x, whereas
the expectation E{¢r(z)} for a fixed interval R is believed
to be constant. For radar interferometry, ¢(z) would be
the behavior of the signal delay depending on the position
in the image « (which cannot be measured in an absolute
sense in an interferogram, but can be measured, e.g., in a
GPS signal), whereas ¢r(z) is the difference between two
points in the interferogram (or two GPS receivers) at an
interval R.

2.2 Synthetic example power spectrum
vs. structure function: fractional
Brownian motion

In Fig. 1 we simulated data with fractional Brownian mo-
tion characteristics (where —3 < v < —1 in eq. (4) and (5),
according to Mandelbrot and Ness (1968)). Note that any
spectrum with ¥ < —1 must be non-stationary (Ishimaru
1978, p. 523). The power spectrum is plotted on a loglog
scale in Fig. 1b. We defined fo = 1 km and found the
corresponding value Py = 210.7 rad?, and the exponent
v = —1.70 = —5/3, as indicated in lc. Using eq. (5), we
can predict the structure function D(z), which is plotted
using a straight line in 1d. The numerical evaluation of the
structure function based on the original data is overlayed
as the striped-dotted line.
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3 STATIONARITY CONSIDERATIONS

For a stationary function, the ensemble averages (or expec-
tation value) of a series with length N are independent of
the position x of this series. In fact, for strictly stationary
functions, the whole probability density function is inde-
pendent of the position x. The question is now whether
one realization, say, an interferogram, can be considered
stationary. Unless we have infinitely many sample func-
tions available which last until infinity, it is never possible
to answer this question (Newland 1993). One practical con-
sideration is to compare the extent of the observations with
the period of its lowest frequency spectral components. If
the period is much larger than the period of its lowest fre-
quency spectral components, it can be assumed that the
process is approximately stationary over most of its range.

Using the spectral index of the power spectrum, we can
make a first statement on stationarity. For stationary func-
tions, the power spectrum has a spectral index v > —1.
For functions with stationary increments, the spectral in-
dex v > —3 (Ishimaru 1978, p.523),(Agnew 1992).

It is important to note that stationarity is a property of
the random function or process, not the data. Testing
whether a specific process is stationary is often difficult,
as we need several realizations of the random process.!
In our case, for spatial tropospheric delay variation, we
used a set of 26 interferograms and analyzed them. As the
data are inherently relative, mean values will often be zero,
but higher order moments vary considerably depending on
the weather situation. Four rotationally averaged power
spectra are shown in figure (8-11). From this study, see
Hanssen (1998), we conclude that tropospheric delay vari-
ation, and therefore the spatial variation of refractivity, is
non-stationary on scales of 100 m to 200 km.

Another consideration on stationarity is the analysis of the
nature of tropospheric delay. As the troposphere is a thin
layer (less than 8 km) over the whole earth, the total tropo-
spheric delay function at time ¢ has only one first moment,
one second moment, etc. It is expected that these moments
remain constant for different time evaluations.

The final consideration concerns the data adjustment using
the Gauss-Markov model, see equations (2) and (3). In or-
der to use this model, the expection E{e} = 0 is a necessary
restriction. Therefore, whereas stationarity only requires
a constant first moment, in the Gauss-Markov model the
requirement that the first moment has a null-value is even
more strict. On the other hand, the Gauss-Markov model
does not dictate anything for second and higher order mo-
ments.

For radar interferometry, the latter considerations are
favourable: an interferogram is an inherently relative mea-
surement. It is only possible to measure phase differences
between pixels. Therefore, the mean value of the total in-
terferogram can be easily set to 0 rad. Moreover, phase
ramps which could be caused by orbit errors are removed
from the interferogram as well. The resulting interfero-
gram seems sufficiently adapted for standard testing and
adjustment.

4 RELATION OF STRUCTURE FUNCTION
WITH CORRELATION FUNCTION

If we define F as the set of random functions, G as the set of
random functions with stationary increments, introduced

by Kolmogorov (1941), and K as the set of stationary ran-
dom functions, we can write, see Fig. 2:

KeGeF (9)

Random functions with stationary increments can be con-
sidered as a generalization of stationary functions, in which
conditions are somewhat relaxed. Here we assume that,
although the signal is not stationary, the variation of the
signal over a fixed interval is stationary.

For the definition of the structure function, we repeat (6):

Dy (R) =< [p(z + R) — o(z)]” > (10)
‘We can rewrite this as:

Dy(R) = <[¢’(z+R)+¢"(2) - 20(@)¢(z+ R)| >
<P (@+R)>+ < (x) >
-2 < p(x)p(z+ R) >
= 2[<¢’(®)> - <p@)p@@+R)>]. (1)
Defining the (auto)correlation function as
By (R) =< p(z)p(x + R) >, (12)
we can write

Dy (R) = 2[B, (0) — By(R)]- (13)

Hence, for stationary signals, knowledge of the correla-
tion function B, (R) implies knowledge about the structure
function D, (R) as well. It doesn’t necessarily work the
other way: eq. (13) does not uniquely determine B, (R),
unless B,(co) = 0 (Monin and Yaglom 1975; Ishimaru
1978).

In short we can summarize

e for a stationary function, both the correlation func-
tion and the structure function exist, while

e for a non-stationary process with stationary incre-
ments, the structure function exists, but the correla-
tion function does not exist.

5 INTERFEROGRAMS:
POWER LAWS

ADDITION OF

Here we investigate what power law relation we would
expect in an interferogram: the sum of two atmospheric
states.

An interferogram is the complex multiplication of two com-
plex SAR images. If in each SAR image, the atmospheric
delay y(x) can be written as

n@) "5 pi(Ly (14)
fa
then the addition theorem (Bracewell 1986) gives

F,power

(11 (@) + o)) 7228 P1<%)"+Pz(i)" (1)

fa

If we take the normalization frequency fo equal in both
signals we find:

(11(2) +12(2)) 28T (Py +Pz)<%)” (16)

Therefore, the exponent does not change, only the Py value.

1Computing a mean on one set of (spatial) data is a spatial average, and not an ensemble average. Stationarity pertains to the

invariance of the ensemble average.
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Note that the similarity theorem is used when scaling a
signal, e.g., when transforming a GPS delay time series to
spatial variation using the wind speed:
F 1 f power 1 f 2 Py f v
. —y — . 9(H) "= = .|8(% = . (L=
ola-x) T oS Sl = ()
(17)

However, this means that the same P(f) values will end
up at a different frequency. When viewed using double-
logarithmic axes, this corresponds with a simple shift of
the curve. The exponent v won’t change.

6 KOLMOGOROV SPECTRUM

In the case of isotropic turbulence in three dimensions,
Kolmogorov turbulence theory predicts a specific struc-
ture function. For the Kolmogorov spectrum, the struc-
ture function Dy (r) of the variation of the refractivity N
is given by (Tatarski 1961, p. 75)

Dn(r) = <[NF+7)—NG@E)> (18)
= On-r? for L<r<i (19)
= C4- P /)? for r<ly, (20)

where /; and I, are the inner and outer scales of turbulence
(Ishimaru 1978; Tatarski 1961; Treuhaft and Lanyi 1987;
Ruf and Beus 1997) Equation (19) was developed by Kol-
mogorov (1941) and Obukov (1941), and is usually referred
to as the ‘two-thirds law’. The exponent 2/3 expresses the
rate at which the refractivity decorrelates with increasing
distance.

The inner and outer scales are defined differently in various
literature sources. Ruf and Beus (1997) indicated an outer
scale in the order of tens of meters, whereas Treuhaft and
Lanyi (1987) simply referred to scales much smaller than
the effective height of the wet troposphere, which is in the
order of km’s. Note, however, that the equations (18-20)
were defined for isotropic 3D turbulence. For horizontal
scales commonly associated with, e.g., GPS and radar in-
terferometry, the spatial distances are often larger than
the effective height of the wet troposphere (1-3 km). This
results in effective 2D turbulence, a property which is ob-
served by several authors.

7 STRUCTURE FUNCTION OF THE SIGNAL
DELAY

Assuming the Kolmogorov relation for 3D turbulence,
within the inner and outer scales, we used

Dn(r) =< [N(F+71) — N()]> >=Cn - r*/3,  (21)

where Cy is a measure for the ‘roughness’ of the spatial
inhomogeneities. In Fig. 3 three examples of this equation
are given for arbitrary values. In the sequel, we will assume
that C has a constant value over all distances 7. The value
of C for different realizations can be determined from the
interferogram data. Furthermore, in the derivation below
we will assume that E{N(¥)} or < N(# > is independent
of the position 7 (Treuhaft and Lanyi 1987)2. The tropo-
spheric delay 7 at location & on the Earth’s surface from a
satellite at elevation angle 6§ and azimuth ¢ is written as

1

(@) = sin 6

/ " N(@ + B0, 2)dz. (22)

Note that Z is a 2D vector on the flat earth, h is the effec-
tive height of troposphere.

For two positions (pixels) with distance p, the expectation
E for the quadratic difference of the delay between the two
positions is the structure function:

Dy (p) =< [1(Z+ ) — (&))" > . (23)

It can be shown that the structure function of the delay
D, (p), eq. (23) can be related to the structure function of
the refractivity Dy (R), eq. (21):

12 9 //[DN (R2) — Dn(Ri1)]|dzdz’.  (24)

D-(p) = sin

The geometric configuration used in this equation is shown
in Fig.4.

The following derivation shows how the structure function
of the delay D, (p) can be related to the structure function
of the refractivity Dy (R).

7.1 Derivation

Starting from the definition of the structure function in
eq. (23) we substitute eq. (22):

1 h
Do) = <l / N(E + f+ 7(8, 6, 2))dz —
h
si1119/0 N(E+ 70, 6, 2))d=]* >

1 h
_ <7/ N2(@ + j+ (0, 6, 2))dz
sin“ 6§ Jo
I N,
+m A N (1’+’l"(6,¢,2))d2
) h
-2 / N(@ + 5+ 76, §, 2))dz
0

x [ N(@+70,¢,2)dz> . (25)

As the expectation of a sum is equal to the sum of the ex-
pectations, we can exchange integration and expectation
(or ensemble average):

1 h e
D.(p) = n—e[/ <N’(@+ 5+ 78, 6,2)) > da

h
+/ < N*(Z 470, ¢,2)) > dz
0
~2 [[ < NG+ 7+706.6.2)
0—h

XN(:E+ F(9,¢, 22)) > dZ1de]. (26)

By assuming that < N2 > is independent of the position
and writing the integral outside of the summation, we can

2This assumption does not hold always RH, but is (only) important for the calculation of the tropospheric covariance.
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simplify eq. (26) to
L
sin” 6

_2// < N+ F+ 76, ¢, 21))

0—h

XN(.’Z“+ F(G, ¢, 22)) > dZ1dZQ]

h
D.(p) = [2/0 < N2 (@ +7(0,6,2)) > d

= o [[e <N @002 > dn
sin” 6
0—h
—2 < N(@+p+70,¢,21))
xN(Z + 78, ¢, 22)) >]dz1dz. (27)

For stationary signals we can write the structure function
of N, eq. (21), as

DN(R)=2< N*(7>-2< NF+R)NF >, (28)

8 TREUHAFT AND LANYI MODEL

A structure function model has been introduced by
Treuhaft and Lanyi (1987):

log(D-()/C?h**) =Y " ai(log @), (29)

i=0

where the variable « is the ratio of the horizontal dis-
tance p with the effective height of the wet troposphere
h (a = p/h). The polynomial coefficients for a delay in
zenith direction are found in Table 1.

9 ANALYSIS EMPIRICALLY
STRUCTURE FUNCTIONS

DERIVED

We analyzed eight interferogram segments of 50 x 50 km
over Groningen in the Northern part of the Netherlands,
and derived the two dimensional structure functions for
these segments. From these we used a rotational average
to obtain a one-dimensional structure function. Figures 5
and 6 show the results for all ei%ht interferograms. The TL
model used an effective height ° of the wet troposphere of
1000 m, and C = 2.4e — 07 m~ /3, cf. equation (29). This
value for C was derived using the standard deviation of
the zenith wet delay over a given time interval for sites at
midlatitudes (California, Australia and Spain). It can be
observed that these standard parameters are not directly
applicable for a coastal zone area such as the Netherlands.

10 RELATIONSHIP BETWEEN POWER
LAW SPECTRAL FORM AND STRUC-
TURE FUNCTION.

To relate the structure function D,(R), also written as
< ¢% >, to the power-law spectral form of equation (4),
we can rewrite ¢r(z) in equation (8) in a more general
form using the convolution notation (Bracewell 1986), see
Fig. 7:

¢r(x) = p(z) * [6(z — R) — (). (30)
Now, we can write the power spectrum of ¢r(x) as

Py(f) = Gr(f)IPo(£), (31)

the multiplication of the power spectrum of ¢(z), P,(f),
and the power spectrum of [§(z — R) — §(x)], denoted by
|Gr(f)|?, where

[0(z — R) — 6(z)] = Gr(f). (32)

Using d(x) £51, and using the shift theorem (Bracewell
1986), we find

§(x— R) 2 e 99R .1, (33)

and using the linearity conditions of Fourier transforms we
obtain

[6(z — R) — 6(z)] = e 7“R — 1. (34)

Using e ¥R = coswR — jsin wR we can retrieve the power
spectrum |Gr(f)|> by complex multiplication

IGr(F)” =
= 2-—2coswR

1 1
= 45(1 — cos(2w§R))

= 4 sinz(%wR)

= 4sin’(7fR) (35)

Hence, the power spectrum of ¢r(z), see (31) is given by

Py(f) = 4sin’(n fR) P, (), (36)

The variance of a random process ¢r is equal to the inte-
gral of its power spectrum over all frequencies, using (35):

< ¢ >= / ~ Py(f)df = / " 4P, (f)sin®(nfR)df. (37)

If we now insert the special power spectral form of (4), we
can write (37) as

<oh>= [ AR/ s’ (e R (39)
0
Substituting v = wfR this can be written as
< ¢ >= / 4Pyu” (xR) ™ fy Y 'R 'sin® (u)du. (39)
0

or, as in Agnew (1992)

> __ 4P R-HY /°° voi2
> >= - du. 40
< ¢p > [T A u” sin” udu (40)

We use the following definite integral (Gradshteyn, Ryzhik,
and Jeffrey 1994, eq. 3.823)

et 2 _ T(p)cos &F
x sin” axde = ————=
o Qutlgn

(41)
with v = p — 1 and a = 1, yielding

4Py R~*Y (v 4 1) cos(vm/2 + 7/2)

2 —
<¢r> = & RN ov+2
—4l'(v + 1) sin(vn/2) Po ,—(v41)
2l/+27-rll+1 f_(l)/R . (42)
(43)

3the effective height h of the wet troposphere is about one half of the nominal wet wet tropospheric scale height (Treuhaft and

Lanyi 1987).

(coswR—1—jsinwR)(coswR—1+ jsinwR)

[a>0,-2 < Re{u} < 0]



2"d International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16-20 August, 1999

From the recurrence relation, see, e.g., (Arfken 1985, Eq.
5.217) or (Monin and Yaglom 1975, p. 90)

™
P (=v) = - vsin v (44)
we derive
™
rrd-v) = pros— (45)
I'(1+v)sinnv v
ol Sl L S 4
m r'(l1-v) (46)
and using sin(2a) = 2sina cosa we find
I'(1 + v)sin(vm/2) _ v (47)
™ " 2cos(vn/2)T(1 —v)
Including (47) in (42) yield
—22 Py
< % >= - O =+ (48)

2v+21v2 cos(vm/2)T(1 —v) f¥

Using I'(p+1) = pI'(p) and by rearranging terms we finally
find

2 -1 Py _(w+1)
2 4
< k> 2v+1gvT(—v) cos(vm/2) f(‘)’R (49)
- CVEBR*”“), (50)
1
or
D,(R) = C’,,%R’(”“), (51)
0

as in equation (5). End of the derivation.

11 CONCLUSIONS

In this paper, we discussed some considerations which are
essential for the construction of the variance-covariance
matrix to include atmospheric signal in radar interfero-
grams. We plan to improve the theory behind this, and
produce a reliable stochastical model. Our final goal is the
inclusion of all parameters into this model, and develop
algorithms for the very large matrices which are the result
of stacks of interferograms.
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Table 1: Parameters for spatial structure function, (Treuhaft and Lanyi, 1987)
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Figure 1: Fractional Brownian motion (a) Simulated fBm. (b) Power spectrum of fBm. (c) the same Power spectrum
with fo chosen as 1 km. P, follows from this choice. We find that for fBm, v & —5/3 (d) The structure function related
to the simulated signal. The solid line is the derived from the power spectrum using eq. (51), with —(v + 1) = 2/3. The
striped line is calculated directly from the data. Note that for large intervals, the estimation is not well determined.
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Figure 2: Schematic visualization of the three sets: random functions, random functions with stationary increments, and
stationary functions. The covariance function is defined only for stationary functions, whereas the structure function is
defined for both stationary functions and functions with stationary increments.
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Figure 3: Example of the structure function Dy (R) = C2R%*3, for C = 1, 1.5, and 2, using arbitrary units of length.
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Rl R2 /

Figure 4: Geometric configuration for the integration along two paths, z and z’, expressed in equation (24). In this sketch
azimuth angle ¢ = 0 is used.
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Figure 5: Derived structure functions for 8 interferogram segments of 50 x 50 km over Groningen, the Netherlands. For
comparison we show the Treuhaft/Lanyi model as the striped line.
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Figure 6: Derived structure functions for 8 interferogram segments of 50 x 50 km over Groningen, the Netherlands, using
a log-log scale. For comparison we show the Treuhaft/Lanyi model as the striped line.
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Figure 7: Dirac impulse convolution

—
Cb.‘
[

Rn

s
S

—arbitracy values.
Cb: S,

— arbitrazy values.
o

%
e

1y -2 10T 00 10! 1y -2 10" 0 10!

1 10
cycles/km cycles/km

Figure 8: Rotational average spectrum of interferogram 1  Figure 9: Rotational average spectrum of interferogram 2
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Figure 10: Rotational average spectrum of interferogram 3 Figure 11: Rotational average spectrum of interferogram 4



