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ABSTRACT

A mathematical model for the estimation of topo-
graphic height or surface deformation is presented,
consisting of a functional and a stochastic model. At-
mospheric signal is modeled as an isotropic covariance
function and included in the stochastic model. This
procedure yields a standardized definition for param-
eter estimation from repeat-pass radar interferometry.

INTRODUCTION

Repeat-pass radar interferometry can be used for the
recovery of topography or surface deformation on earth
from random interferometric phase observations ¢y,
with k = ¢ + (¢ — 1)j, where 7 and j represent the
row and column of the interferogram, respectively. For
every observation, at least five unknown parameters
need to be estimated:

e topographic height Hy,
e deformation in slant direction Dy,
e slant atmospheric delay during acquisition 1: S,tcl,

e slant atmospheric delay during acquisition 2: S,tf,
and

e integer ambiguity number wy.

Therefore, the problem is ill-posed and underdeter-
mined. The observed phase values ¢ form a real
stochastic vector of observations ¢ € IR", character-
ized by the first moment E{¢} and the second moment
D{¢}. Then, after linearization, the relation between
the observations and the unknown parameters can be
written as a Gauss-Markoff model (Koch 1999):

E{p}=Ax; D{p}=C,=0"Q,, (1)
where A is the design matrix, C, is the variance-
covariance matrix, Q, € IR™ " the real positive-
semidefinite n x n cofactor matrix, and 02 € R" the
a priori variance factor. The vector of parameters
x € IR®" is assumed to be real and non-stochastic.

Tailoring the model for repeat-pass interferometry we
can write the system of linearized observation equa-
tions, or functional model as
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where Ay, is the part of the design matrix correspond-
ing to observation k, defined as:
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and the parameter vector xj corresponding to obser-
vation k is:

T
Xk = |: Hka Dka S]f;la S}f;za Wk :| . (4)

The dispersion of the vector of observations can be
estimated using empirical coherence measurements or
system theoretical considerations, and the diagonal
variance-covariance matrix C, can be written as:

= O’zQ(P, (02 =1),

(5)

where o} can be approximated using the estimated
coherence values from the coregistered SAR data. We
assume that there is no correlation between the phase
observations in the interferogram.

In this form, design matrix A has a rank defect of 4n.
To solve this problem either () deterministic informa-
tion needs to be introduced, or (i7) the model has to
be rephrased.

Regarding possibility (z), we assume that either topog-
raphy Hy, or deformation Dy, are known. Moreover,
for now we assume that the integer ambiguity number
wy, is known as well, i.e., phase unwrapping can be
performed perfectly. Nonetheless, both assumptions
can only reduce the rank deficiency from 4n to 2n,
which makes the system still not solvable. Therefore,
we propose to apply possibility (i¢), and rephrase the
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model by lumping the atmospheric slant delay signal
into one parameter Sp = S,tcl — S#2, transferring this
parameter to the stochastic model and replace C, by

C =C, +C;, (6)

where C; is the variance-covariance matrix of the at-
mospheric delay parameter Sj. Using this approach,
the design matrix A has full rank. Proper definition
of C in terms of measurement noise and atmospheric
noise provides the necessary tools for data adjustment
and filtering. In the following sections, the character-
istics of the atmospheric error signal are discussed.

ATMOSPHERIC ERROR SIGNAL

The influence of the refractivity distribution in the at-
mosphere is apparent in two distinct phenomena: ver-
tical stratification and turbulent mixing.

e Vertical stratification is the result of different ver-
tical (1D) refractivity profiles during both SAR
acquisitions, assuming that there are no hetero-
geneities within one horizontal layer. This affects
mountainous terrain only.

e Turbulent mixing results from convective pro-
cesses in the boundary layer and causes spatial
(3D) heterogeneity in the refractivity during both
acquisitions. This affects flat terrain as well as
mountainous terrain.

Empirical studies of the effect of vertical stratification
in the presence of topography have been discussed by
Hanssen and Klees (1999). The error propagation in-
duced by vertical stratification can only be performed
when initial topographic heights are known or derived
in an iterative way. If such information is available,
the covariance between two points in the image at a
different height level could be inserted in Cg. Here we
will focus on the consequences of turbulent mixing.

The effect of turbulent mixing, resulting in 3D spa-
tial heterogeneity of refractivity, is a general form of
atmospheric disturbance, affecting all types of space-
geodetic radio observations (e.g. VLBI, GPS, INSAR).
On short spatial scales the dominant signal is caused
by water vapor variability. Fig. 1 shows the turbu-
lent signal in eight differential tandem interferograms,
acquired over the Netherlands during 1995/96. The
interferometric phase is unwrapped and converted to
zenith delay signal in mm.

The windows in the data of Fig. 1 are used to calcu-
late a set of power spectra. First the mean value of
the window is subtracted, and both in azimuth and
in range direction a linear trend is removed from the
data. A 2D FFT is performed and squared to obtain
the power spectrum. Assuming isotropic behavior, all
wavenumbers u, v are binned into radial wavenumbers

g, using ¢2 = u? + v2, and summed, yielding the radi-
ally averaged 1D power spectrum. For all eight inter-
ferograms of Fig. 1, the resulting spectra are shown in
Fig. 2. The diagonal lines in Fig. 2 indicate the slope
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Figure 2: The 1D rotationally averaged power spec-
tra of the eight atmospheric situations in Fig. 1. The
diagonal lines indicate —8/3 power law behavior.

of —8/3 power law functions. The data show that all
atmospheric situations exhibit power law behavior, al-
though the slopes may differ between —5/3 and —8/3
for different scale regimes. Furthermore, there is a one
order of magnitude range in the vertical position of the
spectra, indicating more or less severe atmospheric sit-
uations. The red line is corresponding with the first
interferogram in Fig. 1, which indeed exhibits the most
severe zenith delay variability.

In analyzing these atmospheric signals, we assume
second-order stationarity, which implies that the co-
variance between two observations is a function only of
the distance between the observations. Empirical co-
variance functions C(r), where r reflects the distance
between two observations, are now derived from the
inverse FFT of the power spectra, as shown in Fig. 3.
Clearly, the interferogram with the most severe atmo-
spheric signal shows the most dominant empirical co-
variance function.

The standard approach to modeling the covari-
ance function is by approximating some paramet-
ric analytical form for C(r) which ensures positive-
definiteness (Rummel 1990; Daniels and Cressie 1999).
As a first, rather coarse attempt we use a Gaus-
sian (Moritz 1989)

C(r) = Coe= 4", (7)

with A2n? = In2, where 7 is the correlation length.
The analytical covariance functions corresponding to

10"
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Figure 1: Eight arbitrary differential tandem interferograms showing only atmospheric signal. The interferograms

are acquired in [month/year] 7/95, 8/95, 12/95, 3/96, 4/96, 5/96, 8/96, 2/96
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Figure 3: Empirical covariance functions correspond-
ing to the atmospheric situations of Fig. 1, derived
from the power spectra.

the empirical functions in Fig. 3 are shown in Fig. 4.
Without any a priori knowledge of the state of the
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Figure 4: Analytical positive-definite covariance func-
tions derived from the empirical covariance function
shown in Fig. 3. The dotted line indicates a mean
covariance function based on all eight realizations.

atmosphere during two SAR acquisitions a mean co-
variance function, as depicted by the striped-dotted
line in Fig. 4, seems an appropriate first-order choice
to model the variance of the atmospheric signal. Note,
however, that some knowledge on atmospheric convec-
tivity might result in a more sophisticated choice for
the covariance parameters. Such information might be
obtained from, e.g., cloud type observations.

The final step in constructing the variance-covariance
matrix Cg of the atmospheric delay, cf. eq. 6, is to
determine the horizontal distance between every pair
of observations, and fill in the covariance correspond-

ing to that distance at the appropriate position in Cs.
The result of this procedure is shown in Fig. 5. The
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Figure 5: Variance-covariance matrix Cg, obtained for
the vectorized observations ¢, using the mean covari-
ance function of Fig. 3. A 12 x 12 interferogram is
assumed, with a pixel size of 0.16 km. The matrix ex-
hibits a Block Toeplitz-Toeplitz Block (BTTB) struc-
ture.

first column of this matrix corresponds with all com-
binations of observations with observation i, at the
upper left position in the original interferogram. Since
the vectorization of the observations is performed as
described in the introduction, the covariance behavior
for observations in the same column of the interfero-
gram is smooth, whereas the step to the next column
of the interferogram is a discrete transition. Perform-
ing this procedure for all combinations with all obser-
vations, we find Cs as in Fig. 5. Note that for this
example, a very small interferogram of 12 x 12 pix-
els was simulated, with a pixel size of approximately
200 m. It is obvious how the number of elements in
the Cs-matrix increases quadratically with an increase
of the interferogram size.

The structure of Cs is a Block Toeplitz matrix with
Toeplitz blocks (BTTB). In Fig. 5, matrix Cs is a 12 x
12 block matrix, each block being a 12 x 12 Toeplitz
matrix (Strohmer 1997). For BTTB matrices, fast
inversion techniques exist, see, e.g.,Kailath, Vieira,
and Morf (1978),Bitmead and Anderson (1980),Strang
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(1986), Ammar and Gragg (1988), and Strohmer
(1997).

CONCLUSIONS

The problem of solving parameters such as topo-
graphic height or deformation signal from radar inter-
ferograms is described in a mathematical form, iden-
tifying a functional and a stochastic model. Rank de-
fects in the system of equations are solved by defining
an analytical covariance function for the atmospheric
signal, based on a set of differential interferograms.
This procedure yields a combined variance-covariance
matrix, consisting of a diagonal variance matrix based
on coherence observations only, and a block Toeplitz-
Toeplitz block covariance matrix based on atmospheric
signal. Future work will focus on the verification and
validation of these models, and solving the numerical
restrictions for these very large matrices. Ideally, this
parameterization should allow series of interferograms
to be combined in the same model, to allow solving for
the unknown parameters in one inversion procedure.
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