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The subsequent paragraphs explain some out of the many OTF tech-
niques that can be used. Examples are: the ambiguity function method, the
least squares ambiguity search, the fast ambiguity resolution approach, the
fast ambiguity search filter, least squares ambiguity decorrelation adjustment
method, and ambiguity determination with special constraints.

Numerous approaches may be found in recent publications, e.g , the fast
ambiguity 1esolution using an integer nonlinear programming method, see
Wei and Schwarz (1995b); a maximum likelihood method based on undif-
ferenced phases, see Knight (1994); the fitting of individual epoch residuals
for potential ambiguity candidates to low-order polynomials, see Boige and
Forssell (1994) Additional methods may be found in the review papers by
Chen and Lachapelle (1994), Hatch (1994), Hein (1995).

Ambiguity function method

Counselman and Gourevitch (1981) proposed the principle of the ambiguity
function, Remondi (1984, 1990a) and Mader (1990) further investigated this
method. The concept should become clear from the following description.
Assume the model (8.34) for the single-difference phase represented by

_ l-""‘ﬂ)f J g B A S zb..iﬁi’x’:'_ﬁ_:--f}' {ak."»\"!‘f‘ s f
,p(t) = Y o4B(#) + Nip — f 6an(?) PERETONN s 9:48)
i o fgd v

"

for the points A and B, and the satellite 7. If point A is assumed known
and B is a selected candidate from the gridded cube, then the term ohg(t)
is known and may be shifted to the left side of the equation:

®p(t) - X«QQ{;B(t) 7 Nﬂ]g;—; f‘jAB(t) : ; (9.49)
The key is to circumvent the ambiguities N j’; 5 A'special effect occurs if the
term 2m N} is used as the argument of a cosine or sine function because
N}y is an integer. Therefore, the whole expression (9.49) is multiplied by

27 and placed into the complex plane by raising both the left and right side
to the power of €' where ¢ = v/—1 is the imaginary unit. In detail,

2T U (-2 & 5 (1)) = H{2m N p—2m F 6450} (9.50)

which may be wiitten as

HOr a1 a0 = 27 Mg e anl), (9.51)

It is illust1ative to consider this situatipn in the complex plane, cf. Fig. 9.3.
Note the equivalence i

€'Y = cosw + 1 sin & i . (9.52)
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Fig. 9.3. Vector 1epresentation in the complex plane

which may be represented as a unit vector with the components cosa and
sin o if a 1eal axis and an imaginary axis are used. Therefore,

i 27 Ngp cos(2m Nig) + i sin(2r Nig)=14i -0 (9.53)
results because of the integer nature of N ,fl g Hence, for one epoch and one
satellite

eH2m U () - el p(1)} _ —i2w féan() (9.54)

remains. Considering n; satellites and forming the sum over these satellites
for the epoch ¢ leads to

e ; 2 ; " Y/ o
E e 2 p ()57 5 (1)} n; e_’%fEAB(t) (9.55)

o nw.._,..—

j=1

Considering more than one epoch, the fact that the clock error é45(t)
varies with time must be taken into account. A glance at Fig. 9.3 should

recall that e=*27f845(?) i5 o unit vector. Thus, when ”e—z 27ff5AE(f)“ =1is
applied to (9.55), the relation ™ i

n LEE by

Zei{zm s(O-F 500 — nj-1 (9.56)

is obtained where the clock error has now vanished.

Take for example four satellites and an erzor free situation (i.e , neither
measurement errors nor model ertors, and correct coordinates for the points
A and B) In this case, the evaluation of the left side of (9.56) should yield
4 where & p(t) are the single-differences of measured phases and ¢’ 5(1)
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can be calculated fiom the known points and satellite positions. However,
if point B was chosen incorrectly then the result must be less than 4. In
reality, this maximum can probably never be achieved p1ecisely because of
measurement errors and incomplete modeling, Thus, the task i restricted
to obtaining the maximum of (9.56) by varying B.

With highly stable 1eceiver clocks and close epoch spacing it is theoret-
ically possible to include more than one epoch within the absolute value,
Using n, epochs, the contribution of all epochs may be summed up by

it

2.

t=1

7 )
Z 6;{21? Q‘AB(t)—%E 9:743“)}

1=1

=nn, (9.57)

where for simplicity the same number of satellites at all epochs is assumed.
Following Remondi (1984, 1990a), the left side of (9.57),1.e., the double sum,
is denoted as an ambiguity function. Analogous to the case with one epoch,
the maximum of the ambiguity function must be found In general it will,
as before, be less than the theoretical value n, n;

The ambiguity function procedure is simple. Assume an appioximate
solution for point B, e.g., by triple-differences. Then, place this solution into
the center of a cube, cf. Fig. 9.4, and partition the cube into grid points.
Each giid point is a candidate for the final solution, and the ambiguity
function (9.57) is calculated for all single-differences. The grid point yielding
the maximum ambiguity function value, which should theoretically be equal
to the total number of single-differences (ie., 7 n;), is the desired solution.
Having found this solution, the ambiguities could be computed using double-
differences. Also, an adjustment using double-differences might be performed
to verily the position of B and the ambiguities. The computation of point
B with fixed ambiguities is the final step.

It is worth noting that the ambiguity function method is completely
insensitive to cycle slips. The 1eason can easily be seen from Eq. (9.53).
Hven i the ambiguity changes by an arbitrary integer amount AN 45> then
e 2 (Nan+ANIE) i still a2 unit vector and the subsequent equations, therefore,

Fig. 94. Search technique
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remain unchanged. Other methods require that cycle slips be repaired before
computing the ambiguity.

Remondi (1984) shows detailed examples of how to speed up the pro-
cedure, how to choose the density of the grid points within the cube, and
how to find the correct maximum if there are many relative maxima for
the ambiguity function. These considerations are significant, since the com-
putational burden could, otherwise, become overwhelming. For illustiative
purposes, assume a 6m X 6m X 6m cube with a one centimeter grid. Then
(601)3 ~ 2.17 - 10® possible solutions must be checked with the ambiguity
function (9.57).

Least squares ambiguity search technique

The method described here is proposed in Hatch (1989) and investigated in
further details in Hatch (1990, 1991). The least squazes ambiguity technique
requires an approximate solution for the position (due to the linearization of
the observation equation) which may be obtained from a code range solution.
The search area may be established by surtounding the approximate position
by a 3¢ region. One of the basic principles of the approach is the separation
of the satellites into a primary and a secondary group. The primary group
consists of four satellites. Based on these four satellites, which should have a
good PDOP, the possible ambiguity sets are determined. The remaining sec-
ondary satellites are used to eliminate candidates of the possible ambiguity
sets.

The set of potential solutions may be found in the following way. Assume
the simplified double-difference model (9.17). If the ambiguities aze moved
to the left side as if they were known, the model reads A® — N = o where
all indices have been omitted. For four satellites, three equations of this
type may be set up. The three unknown station coordinates contained in
the right side of the equation may be solved by linearizing g and inverting
the 3 x 3 design matrix. Specifying and varying the three ambiguities on
the left side gives new position solutions where the inverted design matrix
remains unchanged. Depending on the variation of the three ambiguities,
the set of potential solutions is obtained. Note that Hatch (1990) does not
ase double-differences but undifferenced phases to avoid any biasing.

From the set of potential solutions, incorrect solutions are removed by
taking into account the information of the secondary group of satellites. Se-
quential least squares adjustment would be appropriately used for this task.
Finally, the sum of the squared residuals may be taken as criterion for the
quality indicator of the solution. Ideally, only the true set of ambiguities
should temain. If this is not the case, then, as desciibed previously, the
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solution with the smallest sum of squared residuals should be chosen (after
compaiing it with the second smallest sum}.

Fast ambiguity resolution approach

The development of the fast ambiguity resolution approach (FARA) is given
in Frei and Beutler (1989), Frei (1991), and summarized in Frej and Schu-
bernigg (1992). Following the latter publication, the main characteristics
are (1) to use statistical information from the initial adjustment to select
the search range, (2) to use information of the variance-covariance matrix
to reject ambiguity sets that are not acceptable from the statistical point of
view, and (3) to apply statistical hypothesis testing to select the correct set
of integer ambiguities.

Following Erickson (1992a), the FARA algoiithm may be partitioned into
four steps: computing the float carrier phase solution, choosing ambiguity
sets to be tested, computing a fixed solution for each ambiguity set, and
statistically testing the fixed solution with the smallest variance.

In the first step, real values for double-difference ambiguities are esti-
mated based on carrier phase measurements and calculated by an adjust-
ment procedure which also computes the cofactor matrix of the unknown
parameters and the a posteriori variance of unit weight (a posteriori variance
tactor). Thus, the variance-covariance matrix of the unknown parameters
and the standard deviations of the ambiguities may also be computed.

In the second step, the criteria for the ambiguity ranges to be investi-
gated are based on confidence intervals of the real values of the ambiguities.
Therefore, the quality of the initial solution of the first step affects the possi-
ble ambiguity ranges. In more detail, if oy represents the standard deviation
of the ambiguity N, then +£ oy is the search range for this ambiguity where
k is derived statistically from Student’s t-distribution. This is the first cri-
terion for selecting possible ambiguity sets.

A second criterion is the use of the correlation of the ambiguities. As-
suming the double-difference ambiguities N; and N j and the difference

Nij = Nj ~ N;, ' (9.58)
the standard deviation follows from the error propagation law as
oN;, = '\/JJ?V; - 20'N.-Nj + 0-12\5 (9.59)

whete 0%, , onw,, and 0%, are contained in the variance-covariance matrix of
the parameters. The search range for the ambiguity difference Niis kg N,
where k;; is analogous to the search range for individual double-difference
ambiguities. This eriterion significantly reduces the number of possible in-

teger sets. An even more impressive 1eduction is achieved if dual frequency
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phase measurements are available. Very illustrative figures demonstrating
this reduction are given in Frei and Schubernigg (1992).

In the third step, least squares adjustments with fixed ambiguities are
performed for each statistically accepted ambiguity set yielding adjusted
baseline components and posteriori variance factors.

In the fourth and final step, the solution with the smallest a posteriori
variance is further investigated. The baseline components of this solution are
compared with the float solution. If the solution is compatible, it is accepted.
As shown in Erickson (1992a), the compatibility may be checked by a x2-
distribution which tests the compatibility of the a posteriori variance with
the a priori variance. Furthermore, another test may be applied to ensure
that the second smallest variance is sufficiently less likely than the smallest
variance. Note, however, that these two variances are not independent, see
Teunissen (1996), Sect. 8.2.3.

As seen from the algorithm, FARA only needs data for double-difference
phases; thus, in principle, neither code data nor dual frequency data are
required; however, these data will increase the number of possible ambiguity
sets dramatically (see the second step of the algorithm).

Fuler et al. (1990) present a very officient and rapid search technique,
similar to FARA based on the a posteriori variance (1esulting from the sum
of the squared residual ertors). First, an integer set of ambiguities is in-
troduced in the adjustment computation as constraints leading to an initial
solution and the corresponding a posteriori variance. The influence of other
ambiguity sets on the initial solution and the a posterion variance is then
determined without recomputing the whole adjustment. This influence may
be calculated by some simple matrix and vector operations where only a
reduced matrix with the dimension of the constraint ambiguities must be
inverted, Following Landau and Euler (1992), the computation time for the
matrix inversion may be optimized when the Cholesky factorization method
is applied which decomposes a symmetric matrix into a product of a lower
and an upper triangle matrix. The impact of a changed ambiguity set on
the sum of the squared residuals may be reduced by the Cholesky factoriza-
¢ion to the computation of an innet product of two vectois. Furthermore,
not even the full inner product must be computed in all cases Based on a
threshold, the computation of the inner product for some integer ambiguity
sets may be interrupted and the corresponding ambiguity set rejected.

The performance of this method is demonstrated in Landau and Eu-
ler (1992) by imposing examples. Assuming six satellites and therefore five
double-difference ambiguities with a £10 cycle uncertainty each, the total
number of possible combinations is 3.2 millions. Using a 486 PC, the com-
putation by the Cholesky factorization took 49.1seconds. Optimizing the
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Cholesky factorization by introducing the above mentioned threshold for
the inner product, the computation time reduces to 0.2seconds. For a larger
search window of 50 cycles, the corresponding computations amount to 1.5
days for the Cholesky factorization and 3 seconds for the optimized method.
The method may be extended to dual frequency data. The appropriate
formulas are given in Landau and Euler (1992).

The search techniques described so far performed the search in the am-
bignity domain. An alternate technique substitutes the position as known
and solves for the ambiguities as unknowns. This could be performed in the
following way. Eliminate the ambiguities by forming triple-differences and
obtain a first estimate for the position and its standard deviation ¢ by an
adjustment. Now center the approximate position within a cube of dimen-
sion +30 in each coordinate direction and partition the cube into a regular
grid. The cube, thus, contains a matrix of points where the center point is
the triple-difference solution, see Fig. 9.4. Bach of these grid points is con-
sidered a candidate for the correct solution. Consequently, one by one, each
candidate position is substituted into the observation equation. Then the
adjustment (holding the trial position fixed) is performed and the ambigui-
ties are computed, When all points within the cube have been considered,
select the solution where the estimated real values of the ambiguities appear
as close as possible to integer values., Now, fix the ambiguities to these in-
teger values and compute (holding the ambiguities fixed) the final position
which will, in general, be slightly different from the corresponding grid point
of the cube.

Fast ambiguity search filter

Following Chen (1994) and Chen and Lachapelle (1994), the fast ambiguity
search filtering algorithm (FASF)is comprised of basically three components:
(1) a Kalman filter is applied to predict a state vector which is treated as ob-
servable, (2) the search of the ambiguities is performed at every epoch until
they are fixed, and (3) the search ranges for the ambiguities are computed
recursively and are related to each other.

By applying the Kalman filter, information from the initial epoch to the
current epoch is taken into account. The state vector of the Kalman filter
also contains the ambiguities which are estimated as real numbers if they
cannot be fixed After fixing the ambiguities, the state vector is modified
accordingly. The state vector of the Kalman filter is considered an observable
and establishes, along with the regular observables (ie, double-difference
phase equations), the design matzix.

The 1ecursively determined search ranges are based on the a priori geo-
metric information and the effect of other (preliminarily) fixed ambiguities
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As an example, take the case of four double-difference ambiguities. The first
ambiguity is computed without fixing any other ambiguity. The search range
for the second ambiguity is computed where the first ambiguity is introduced
as a known integer quantity (although it may even be the wrong integer num-
ber), the search range for the third ambigunity is computed where the first
and the second ambiguity are introduced as known integer quantities, and
the procedure is continued for the fourth ambiguity. According to Chen and
Lachapelle (1994), this concept is denoted as recursive computation of the
search range. This recursive computation is similar to nested loops used
in computer piograms Referring to the example of the four ambiguities,
four nested loops are requited where the loop of the first ambiguity is the
outermost and the loop of the fourth ambiguity is the innermost loop It is
important to note that the ranges of the loops (apart from the outermost
loop) are computed based on the values of the corresponding outer loop in-
dexes. Thus, e.g., the search range of the second loop is determined by using
the ambiguity value corresponding to the first (and outermost) loop index.

To avoid very large search ranges, a computational threshold is used.
Ambiguities which cross this threshold are not fixed but computed as 1eal
numbers. Thus, an attempt to fix the ambiguities is only made if the number
of potential ambiguity sets is below this threshold. Under normal circum-
stances, the number of potential ambiguity sets should decrease with accu-
mulating observations, Ideally, there should finally remain a single potential
ambiguity set. In practice, however, this will usually not be the case so that,
conventionally, a ratio test of the sum of the squared residuals between the
minimum and the second best minimum is calculated. If this ratio fulfills a
specified criterion number, the minimum solution is considered to yield the
true set of ambiguities.

Once the ambiguities are fixed properly, they are removed from the state
vector of the Kalman filter, ie., from the estimation. Accordingly, the cor-
responding observation equation is rearranged.

The ranges of the loops for the ambiguities, i.e., the uncertainties, are cal-
culated by using a least squares approach with parameter elimination. First,
the parameters representing the station coordinates are eliminated from the
normal equations so that the ambiguities are the only remaining parameters
of the model based on double-differences. Furthermore, according to the
previous discussion on loops associated with the ambiguities, the ambigui-
ties of the outer loops are constrained as integers (even if they may be wrong
values). Returning to the example of the four ambiguities, if the range of the
third ambiguity is to be determined, the first and the second ambiguity aze
assumed to be known and introduced as constraints (which is equivalent to
removing them from the estimation vector). In fact, this may be done very
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efficiently as shown in Chen and Lachapelle (1994) where only single rows
and columns of the adjustment matrices must be taken into account As
result of this parameter elimination, a float estimation of the corresponding
ambiguity and its variance are finally obtained. Multiplying the variance
by a scale factor and subtracting and adding this 1esult with respect to the
float solution yields the seaich range for this specific ambiguity.

Note that if the uncertainty ranges are not calculated correctly, the true
ambiguity set will not be found.

Least squares ambiguity decorrelation adjustment method
Teunissen (1993) proposed the idea and further developed the least squares
ambiguity decorrelation adjustment (Lambda) method. A fairly detailed de-
scription of Teunissen’s method is (slightly modified) given here. At present,
this method is both theoretically and practically at the top level among the
ambiguity determination methods.

The conventional formulation of the adjustment by parameters is

n! Pp = minimum (9.60)

whete n is the vector of residuals and P is the weight matrix, This formu-
lation implies that the weighted sum of squared residuals is minimized As
shown in Sect. 9.3.1, the weight matiix equals the inverse of the cofactor
matiix ¢ of observations Consequently,

27 Q7! n = minimum (9.61)

is an equivalent relation. One remark is appropriate here. Imprecisely, the
cofactor matrix is frequently also denoted as covariance matrix. Theoreti-
cally, the difference between the two matrices is the a priori variance of unit
weight acting as a scale factor which may be arbitrarily chosen. Thus, if this
scale factor is set equal to one, the cofactor matrix equals the covariance
matrix.

Applying least squares adjustment for, e g, relative positioning based on
double-difference phase observations, the unknowns being determined are
coordinate increments for the unknown station and double-difference am-
biguities. The values obtained from the adjustment procedures aie in the
sense of this minimum principle the most likely ones. However, the double-
difference ambiguities are obtained as real values (often denoted as float
ambiguities) but should be integer values. The main objective is, thus, to
obtain integer ambiguities which are the most likely ones. Denoting the vec-
tor of adjusted float ambiguities by N and the vector of the corresponding
integer ambiguities by N, the difference between the two vectors may be
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regarded as residuals of ambiguities. Consequently, it makes sense to min-
imize these residuals again by the same principle, i.e, the weighted sum of
squared residuals. Explicitly,

(N — ﬂ):’Qﬁl (¥ — N) = minimum (9.62)

is obtained where @ ¢ is the cofactor or covariance matrix (see discussion
above!) of the adjusted float ambiguities. Teunissen et al, (1995) introduce
the short-hand notation

X(N) = (N - E)TQ]‘V] (N — N) = minimum (9.63)

and denote the solution of this problem the integer least squares estimate
of the ambiguities. Certainly, an approach different from the usual least
squares adjusiment calculation must be chosen to account for the integer
nature of the still unknown ambiguities N.

The following simple example demonstrates the solution principle. Con-
sidering two ambiguities and assuming &y as unit matrix

— 1o 9
Q'_ 0 1 ’ ('64)

equation (9.63) reduces to
XA(N) = (N1 = Np)? + (N2 — Ng)? (9.65)

which is the sum of independently squared ambiguity 1esiduals. The function
X*(IV) becomes a minimum, if each squared residual (N; - N)%i=1,21s
minimized individually. Obviously, the minimum is achieved if the N; are
chosen as those integer values being nearest to the real values. In other
words, rounding the real value ambiguities to their nearest integer values
yields the desired minimum for x2(N)

Since @ & Was assumed as unit matrix, the resulting Ny and N, are fully
decorrelated which is also evident from Eq.(9.65). Geometrically, if two
coordinate axes are associated with N; and Ny, this equation represents
a circle centered around the ambiguities N and with 1adius x(). This
circle is 1egarded as ambiguity search space. Mathematically, the two integer
ambiguities are contained in the two-dimensional integer space.

It is more general to assume @y as diagonal matrix. Using again two
ambiguities, the matrix

Qp = {qﬁ’ﬁ’ ’ J (9 66)

o ¢ a5,
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yields the result
(81 — Np)? n (3 — N,)?

qu 1\71 qﬁz ﬁg

(9.67)

X (N) =

which leads to the same conclusion, namely the minimum of x(N) is ob-
tained if the real value ambiguities are rounded to their nearest integer val-
ues,

Since @ & Was assumed as diagonal matrix, the resulting N, and Ns age
still fully decorrelated which is also evident from Eq (9.67). Geometrically, if
two coordinate axes are associated with Ny and N3, this equation represents
an ellipse centered around the ambiguities  and with the semiaxes

o= x(X) /TR (9.68)
b= X(ﬂ)\/ qﬁzﬁz

where (N} acts as a scale factor. The axes of the ellipse are parallel to the
dizection of the coordinate axes. This ellipse is regarded as an ambiguity
search space. Mathematically, the two integer ambiguities are contained in
the two-dimensional integer space.

In reality, Q & Will be a fully occupied symmetric matrix. Restricting
again to two ambiguities, this matrix reads

Uiy U

_Q_N: [ 14¥1 11¥2 J ) (9I69)
qﬁ]_Nﬂ qﬁzﬁg

Substituting this matiix into the general minimum requirement (9.63) yields

. T 1 .
V) = ’: Ny - N J ’: Un Ry, 98N, :, [ Ni- M } (9 70)

Ny — N, VA A Ny - N,

and, after carrying out the matrix-vector multiplications,

EQ(N) _ (]‘:‘Tl — N1)2 1 (NZ - N2)2 . (Nl — Nl)(Nz — Nz)qﬁlﬁz
o qﬁlf\.ﬁ qﬁzﬁz qﬁlﬁl qﬁzﬁz

(9.71)

is obtained where

2

g. -

PN =N [1- —Tale Y (9.72)
qN’lquﬁgﬁg
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Equation (9.71) still represents ellipses but their axes are rotated with re-
spect to the coordinate system associated with Ny and Np which implies
a correlation of the two ambiguities. Due to this cortelation, expressed by
the third term on the right side of (9 71), it is more complicated to find
the minimum for ¥2(X). In other words, the rounding to the neazest integer
principle no longer works. To return to this convenient feature, the idea is to
apply a transformation that decorrelates the ambiguities which means that
the transformed covariance matiix of the ambiguities becomes a diagonal
matrix.

Finding a transformation that produces a diagonal matrix for & seems
to be trivial since an eigenvalue decomposition yields a diagonal matrix as
output. Explicitly, each symmetiic matrix

Q= [ 11 q12 J (9.73)
d12 G2
can be transformed into the diagonal matrix
Q = [ a0 J , (9.74)
- 0 A

The eigenvalues are defined by

A1 =3{(q1 + qo2 + w)
(9.75)
A2 =3 (qu1 + gag — w)

with the auxiliary quantity

w = \/(Q'u — ¢22)% + 4q},. (9.76)
The two eigenvectors are orthogonal to each other and are defined by the
1otation angle ¢ which can be calculated by

2
tan2p = ——22 (9.77)
g11 — Gaz2
The only problem is that the integer ambiguities N must also be trans-
formed and must preserve their integer nature, Thus, an ordinary eigenvalue

decomposition will not work.
Generally, the task may be formulated in the following way. The am-

biguities N and N are reparameterized by matrix Z Note that Teunissen
uses the transposed matrix Z7, but the piinciple remains the same Hence,
N =ZN

!

(9.78)

=
Iy
=

€D
%»
I
N
)
2
[N
-y



92 Ambiguity resolution 241

where the tiansformation of the cofactor matiix is obtained by applying the
ertor propagation law. The ambiguities N’ obtained after transformation
must 1emain integer values That restricts the matrix Z to a specific class
of transformations, see Teunissen (1995), where three conditions must be
fulfilled . Following Teunissen {1994}, these conditions are: (1) the elements
of the transformation matrix Z must be integer values, (2) the transforma-
tion must be volume preserving, and (3) the transformation must reduce the
product of all ambiguity variances.

Note that the inverse of the transformation matrix Z must also consist
of integer values only, because upon a retransformation of the (determined)
integer ambiguites N/, the integer nature of the ambiguities must be kept.

For the two-dimensional example shown, volume pieserving reduces to
alea preserving of the ellipse represented by the two-dimensional cofactor
(covariance) matrix. _

If the three conditions are fulfilled, the transformed integer ambiguities
are again integer values and the cofactor (covariance) matrix of the trans-
formed ambiguities is more diagonal than the cofactor (covariance) matrix
of the original ambiguities, cf. Teunissen (1994).

The Gauss transformation is one of the possible candidates In two di-
mensions, the Gauss transformation is given as

10 ]
Z = (9.79)

a 1

where o may be chosen arbitrazily. Applying this transformation to N vields

N 1 0] M
. = . (9.80)
N; a 1 Ny
giving
N{=M
Al . . {9.81)
Né =« .Nl -|— Ng
and
1 0] [ awm, 905 1 o
o 1] dwmp, R | L0 1
Denoting the elements of the symmetric ¢ ¢, as
(9.83)

Qe [QN;N; a5, }

Yy 9NN



242 9 Data processing

results in
i fr = 99 Wy
Iy = 98, &, T 95, (9.84)
Ik = 00N, 2005, K%, + 9N,
To determine a, two arguments may be used which lead to the same re-
sult. First, § st should become a diagonal matrix, ie, 95 must become
zero. Hence, from the second equation in (9 84) follows & = —g¢y 5. /4%, 5, -

Second, find a value for « that minimizes 91 This need arises from the
third condition of the transformation, namely, the product of all ambiguity
variances must be reduced. Since the variance of the first ambiguity remains
unchanged due to IR = AR Ry the reduction of the ambiguity variances
is maximized if NN is minimized. Thus, differentiating IR with re-
spect to @ and setting the result equal to zero yields the same expression
&= =GR, / 45,5, for o again. Substituting this result into (9.79) gives

1 0
Z= (9.85)
R YA

and accordingly to (9.80) for the armbiguity transformation

N 1 0l [ M
e ) (9.86)
Nj G /s, 1] | M

which may be recognized as the conditional least squares estimate for ]\75, see
Teunissen (1994) Conditional least squares estimate means that the esti-
mate for N} is conditio-ned on N{. The element @ = —qg, ﬁﬂ./ Uy will most
likely violate the condition that the elements of the transformation matrix
must be integer values. Therefore, an approximate decorrelation is obtained
if this element is rounded to its nearest integer value. Symbolically, this will
be t?xpl.'ess?ed by —‘IN'I.‘[(]Njl K./ 95, &7,] Where the operator I.NT performs (like
an intrinsic function in a computer language) the rounding to the nearest
integer. Therefore, the transformation matrix becomes

/- [ ! 0 ] (0.57
~INT{gx, 5, /05, 5) 1

and the transformed ambiguities

]\7{ _ 1 0 N
[ N } - l ~INT(gg, 5,/ 0, 5, 1 } [N; ] (9.88)
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are, as just mentioned, an approximation to fully decorrelated ambiguities.
The role of the two ambiguities may be interchanged. In the transfor-
mation above, the ambiguity Ny remains unchanged and N, is transformed.
Analogously, N, may be kept unchanged and Ny will be transformed. For
a better distinction of the two transformations, the subscripts 1 and 2 are
introduced Thus, the transformation under consideration is now expressed

by

1 0
4y = ] ay = —INT[gy, 5, /85,5, (9.89)
(23] 1
The other Gauss transformation has the form
1 012
Zy = 01 g = —INT[qﬁlﬁz/QN2ﬁ2] (9.90)

where the computation of o was performed in a similar manner to the
previous case. The transformed ambiguities are obtained from

Ni’ 1 —INTgg Nz/qﬁzﬁ ] Ny
Vi | n 91
[ 7 } [ 0 1 T (9.91)

For a numerical example, Teunissen (1996), Sect. 8.5.2, assumed that
after a least squares adjustment the ambiguities

i=[ 5] 1)

L 9E T, | 534 384
Qx = =

and

UGl R, 384 280

were calculated. Now the transformation is applied to § . Translating the

matrix elements to variances, the ambiguity Ny has a larger variance than
N,. Hence it is preferable first to change N, and keep N, unchanged, ie.,
to apply a transformation based on Z,. From (9.90),

Qg = _INT[QNJNQ/QNQﬁg] = —INT[38.4/280] = —

and
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are obtained The transformation according to (9.78) reads

0 = 10 1 —17[534 384 10
N TE2ERE2 T g 1| 384 280 )| -1 1

and gives

0 46 10.4
=87 1104 280 |

The effect of this transformation can be seen best if the ambiguity search
space, represented by the standard ellipse (which is centered around the
corresponding ambiguities), is considered. The parameters of the standard
ellipse follow from (9.73) through (9.77) it @ is replaced by @5 and @,
respectively. The eigenvalues of the matrices equal the squared semiaxes of
the ellipse and ¢ defines the direction of the semimajor axis. Explicitly, the
data

Qg+ =90, b=10.5, ¢=35°

Qg : a=57, b=08, ©=069

are obtained. Graphically, the standard ellipses are shown in Fig 9.5. The
standaid ellipse for @ 4 is centered around the ambiguities &V, i.e., the origin

is at Ny = 1.05 and N, = 130, The standard ellipse for Qg is centered

around the ambiguities N ’, i.e., the origin follows from N "= Zs N and
amounts to Nj = —0.25 and N} = 1.30.

The figure also indicates search windows with sides parallel to the two
axes of the two-dimensional integer search space, i.e., two horizontal and
two vertical tangents of the ellipse The “yolumes” of the two ellipses are
the same because the transformation is volume preserving, but the shape
and the orientation of the ellipse has changed. The distance between the
two horizontal tangents has not changed because these two tangents bound
the search range for the Ny ambiguity which remained unaltered by the
Z, transformation, whereas the distance of the two vertical tangents has
changed.

Fach grid point represents one pair of ambiguities. Under the assumption
that each grid point of the search window must be regarded as a possible
candidate to be investigated for a reasonable solution, the advantage of the
transformed search space becomes obvious.

From comparing the off-diagonal elements of @ and of the transformed
Qs the decrease of correlation is evident.
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Fig. 9.5. Ambiguity search space for @ (left) and transformed ambiguity
search spaces for @ ¢, (middle} and @y, (right)

Another transformation may now be applied to &4, Since ambiguity

N} has a larger variance than N1 it is preferable to change N} and keep N
unchanged, i.e ., to apply a transformation based on Z;. First, from (9.89)

1 = ‘INT[‘INIM/‘INGM] = —INT[10.4/4.6] =-2

is determined giving

Z 10
S S |

o 2o = 1 0 46 10471 -2
e TSI EL T o 1104 2800 1

where the double prime expresses that the transformation is applied on the
once transformed matrix. The result is

0 16 1.2
=N T 192 48]

The standard ellipse for g, is given bya=24,b=19, ¢ =47 and
is shown in Fig. 95 The standard ellipse for _er is centered around the
ambiguities N ”, ie., the origin follows from N - Zy N ' and amounts to
N# = —0.25 and N = 1.80. As far as the search window is concerned, the
effect may easily be seen from the much smaller search area (represented by
the window) of € 4,

Accordingly, the distance between the two vertical tangents has not
changed because these two tangents bound the search range for the Ny am-
biguity which remained unaltered by the Z, transformation, whereas the
distance of the two horizontal tangents has changed.

and
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From comparing the off-diagonal elements of &y and of the transformed
&> the decrease of correlation is evident However, the ambiguities are
still not fully decorrelated.

The two transformations may also be combined to a single transforma-
tion. Using Cyn = 2 Qﬁ,gf and substituting Qi = _ZzQNZg leads

to
— T T
QNH - Zl _Z.2 _Q“ﬁ Z2 Z.l

Z z!

S I

so that now the single transformation matrix Z 1epresents the composition
of the Z; and the Z; tiansformation.

The extension of the 1eparameterization of the ambiguity search space to
higher dimensions is possible. Teunissen (1996), Sect. 8.5.3, gives the decor-
relating ambiguity transformation Z for the three-dimensional case which
would apply if double-differences of four satellites are used, and a twelve-
dimensional transformation for seven satellites and dual irequency data. Ri-
zos and Ian (1995) piopose an iterative procedure to generate the decorre-
lating ambiguity transformation Z Note that the ambiguity search space
becomes an ellipsoid for the three-dimensional example and an n-dimensional
hyperellipsoid for n > 3

After the decorrelation of the ambiguities by the Z transformation, the
task of actually solving ambiguity estimates remains. The search can be
catried out very efficiently by using the sequential conditional adjustment, a
standard technique in adjustment theory. Related to the ambiguity estima-
tion, an overview is given in Jonge and Tiberius ( 1995} and some details are
covered in Teunissen (1996), Sect. 8.3.2. The sequential conditional adjust-
ment determines the ambiguities step by step (ie., sequential) one after the
other. For the i-th ambiguity to be estimated, the previously determineéd
¢t — 1 ambiguities are fixed (i.e., conditional). The sequential conditional
least squares adjustment ambiguities are not correlated. This means that
the effect of the Z transformation will not be destroyed.

Some details on the actual discrete search strategy are given in Teunis-
sen (1994), Teunissen et al. (1994), Teunissen (1996), Sects. 8.3.2, 8.5.3.

In summary, Teunissen’s Lambda method may be separated into the

following steps:

where

1. A conventional least squares adjustment is carried out to yield the
baseline components and float ambiguities.
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2. Using the Z transformation, the ambiguity seal ch space is reparame-
terized to decorrelate the float ambiguities,

3. Using the sequential conditional least squares adjustment together with
a discrete search strategy, the integer ambiguities are estimated. By
the inverse transformation Z~!, the ambiguities are retransformed to
the original ambiguity space where the baseline components are given.
Since Z~! consists only of integer elements, the integer nature of the
ambiguities is kept.

4. The integer ambiguities are fixed as known quantities and another
conventional least squares adjustment to determine the final baseline
components is performed

Ambiguity determination with special constraints

Several multiple receiver methods for kinematic applications exist. One com-
mon procedure of this technique is to place two or more receivers at fixed
locations (usually short distances apart) of the moving object. Since the lo-
cations of the antennas are fixed, constraints (e.g., the distance between two
antennas) may be formulated which can be used to increase the efficiency of
the ambiguity resolution. In principle, the gain by using constraints results
in a reduction of the potential ambiguity sets. This is illustrated briefly by
two examples; namely, attitude determination and aircraft-to-aircratt posi-
tioning.

The example of attitude determination in a marine environment is taken
from Lu and Cannon (1994) and employs the distances between the antennas
on a ship as constraints for the ambiguity resolution. Attitude determina-
tion is explained in Sect. 12.2. Here, only the principle of the ambiguity
resolution with the constraint of the known distance for a single baseline
is described. Referring to the double-difference model (9.17), four satel-
lites yielding three double-differences are considered, Analogously to the
procedure for the least squares ambiguity search technique described ea:-
lier, the equations are reformulated as A ® — N = p where all indices have
been omitted. The specification of N, the double-difference ambiguities, is
accomplished by searching a possible set of ambiguity solutions. The most
conservative method to define the search space would be to take the length of
the baseline and divide it by the wavelength of the car rier used, ie., 19cmin
the case of L1 The 1esulting number of cycles taken once positively and once
negatively and considered for each ambiguity defines the search area, Vari-
ous methods exist to 1educe the burden of the search  Jurgens et al. (1991)
propose for example a third antenna aligned with the other two antennas
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{of the baseline to be determined) and located within less than one carrier
wavelength from one of the two antennas In general, the double-difference
ambiguities of the two close-by antennas will vanish so that an approximate
azimuth and pitch information can be determined and used to reduce the
search space for the remaining longer baseline.

Lu and Cannon (1994) and Lu (1995) reduce the search space by in-
troducing the known distance of the baseline. Referring to the system
A ®—~ N = p, thiee double-differences are considered and the linearization of
o is performed with respect to the reference station of the baseline Thus, the
linearized system may be written as w = Az where A is a 3 X 3 design ma-
trix resulting from the linearization, z contains the unknown baseline com-
ponents (since the linearization was carried out with respect to the known
station), and the left side of the equation contains the residual vector w which
also comprises the ambiguities. Since z represents the baseline components,
the constraint of the length of the baseline, denoted by b, may be intro-
duced by first forming A~'w = g and then 5 = 272 = w7 (A A7) 'w. This
system may be further simplified by applying to A AT a Cholesky decompo-
sition which reduces A to a lower tiiangle matrix. The advantage obtained
from this decomposition is that the third ambiguity may be expressed by a
quadratic equation containing the other two ambiguities. Thus, introducing
search trials for these two other ambiguities yields two solutions for the third
ambiguity. Therefore, the constraint significantly reduces the search space.
Redundant satellites may be used to further reduce the size of the search
space.

The performance of this method can best be seen by means of a simple
example. Assuming a 15 cycle uncertainty for the three unknowns would
yield (together with the one ambiguity set obtained by rounding the cal-
culated unknowns to their nearest integer values) 31 x 31 x 31 = 29791
possible ambiguity sets, whereas taking into account the constraint as de-
scribed above reduces the set of possible ambiguities to 31 X 31 x 2 = 1922,

The second example presented here refers to the introduction of con-
straints for an aircraft-to-aircraft positioning as proposed in Lachapelle et
al. (1994). The situation is shown in Fig. 96 Fach of the two aircraft is
equipped with two receivers. The corresponding distances of the antennas
between ¢ and j on one aircraft and &k and £ on the other aircraft are known
and may be introduced as constraints to determine the double-difference
ambiguities for each airplane separately, i e, the double-differences N;; and
Ny for the avajlable satellites (which are not indicated here by appropriate
superscripts). These resolved ambiguities N;; and Ny may now be used
to interrelate the two aircraft by constraints. As pioposed in Lachapelie et
al. (1994), thiee sets of double-difference ambiguity relations aze constiained
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Fig. 9.6. Aircraft-to-aircraft GPS positioning with four receivers

by using, e.g, N;'j = Njk - N,‘k, N,;j = N]‘g — N,'g, and ng - Ng,‘ - N;m;‘.
Thus, for five satellites there are 4 x 3 double-difference equations of this
type which are used to reduce the number of potential ambiguity solutions.
Note that these relations are not independent from each other but may still
contiibute to average out several error sources like carrier phase noise and
multipath.

Examples given in Lachapelle et al (1994) demonstrate that for two
aircraft within 1km typically 4 to 6 minutes of measurements (with a data
rate of 1 Hz) are sufficient to obtain a unique solution. The correctness
of the ambiguities may 1oughly be checked by the double-difference phase
residuals which must not show a significant drift over time. A drift would be
an indication of wrong ambiguities. The rms of the double-diffezrence phase
1esiduals was in the amount of 0 8 cm

Based on the given data set, several trials were performed by shifting
the initial epoch from one trial to the next by 90 seconds. Of these tiials,
some 50% yielded the same ambiguities. This indicates the correciness of
like ambiguity sets; however, this also demonstiates that the reliability of a
single solution is not sufficient

9.3 Adjustment, filtering, and smoothing

9.3.1 Least squares adjustment

Standard adjustment

There are numerous adjustment techniques that can be used, but least
squares adjustment with parameters is the only one discussed here. It is
based on equations where the observations are expressed as a function of
anknown parameters. A Taylor series expansion is usually performed in the
case of nonlinear functions.” This 1equires approximate values for the pa-
rameters. The Taylor series expansion must be truncated after the second
term to obtain a linear function with 1espect to the unknowns The resulting
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£ Vector of observations
4 . design matiix
z vector of unknowns.

By introducing in addition the definitiong
o8 ... a priori variance
covariance matrix,

the cofactor matrix of observations is

1
9= =L, (9.93)
99
and
E=g7 (9.94)

is the weight matrix, Assuming n observations and u unknown parameters
leads to a design matrix 4 comprising n rows and columns. For n > %, the
system (9.92) is redundant (overdetermined) and, in general, nonconsistent
because of observational errors o noise. To assure consistency, the noise
vector . is added to the vector of observations and Eq, (9.92) converts to

f+n=Agz. (9.95)

The solution of thig system becomes unique by the least Squares principle
nfPp = minimum. The application of this minimum principle on the ob-
servation equations (9.95) leads to the normal equations

ATPAz=ATpy (9.96)
with the solution

z=(ATPA) AT Py (9.97)
which can be simplified to

=Gy (9 98)

where G == ATPA and g = APy
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The cofactor matrix ¢ . follows from z = G1 AT P £ by the covariance
propagation law as

Q. =(GA"P)Q,(CATE) (9.99)
and reduces to

Q =G '=(A"PA” (9.100)

—
by substituting ¢, = Pt

Sequential adjustment
Assume a partitioning of the observation model (9.95) into two subsets:

¢ = 4 _ n A= Ay 9
cla] welz] a4 em

Using the first set only, a preliminary solution () can be calculated accord-
ing to (9.97) and (9.100) by

py = (ATPy ATIATP G = Gy

Q =(ATP A) =G

~=E(0)

(9.102)

Provided that there is no correlation between the two subsets of observations,
the weight matrix

Py 0
2:[ . 22} (9.103)

is a block-diagonal matrix. The matrix G and the vector g for the adjustment
of the full set of observations result from adding the corresponding matrices

and vectors for the two subsets:
G=A"TPA= (AT P1 A + AT P, Ay) =Gt G ( )
9.104
g =ATPL = (AP + AJPaly) =0, T 0y

If the change of the pieliminary solution z(o) due to the additional observa-
tion set £, is denoted as Az, then

(Gi + Gy) (g +Az) =9, 9, (9.105)

is the appropriate formulation of the adjustment. This equation can be
slightly 1ear1 anged to

(G1+G)Az=9¢, g, (G, + Ga) z(o) {9.108)
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where the 1ight side, cf Eq. (9.102), can be simplified because of the relation
g, — Gy z(o) = 0 so that

(Gr+Go) Az =g, ~ Gra (9.107)
results. Resubstituting g, and G, from (9.104) yields

(Gi+Gy) Az = AT Py ty — AL Py Ay (g (9.108)
or

(Gr + Gy) Az = 43 Py (8, — Ay zg)) (9.109)
and

Az = (G + G,y) T AL P, (4, — A, Z(o)) (9.110)
o1, finally,

Az = K (4 — 43 2(0)) (9.111)
where

K= (G +G,)'Alp,. (9.112)

Note that the tetm A, Z(g) in (9.111) can formally be considered as prediction

for the observations £, .
The change AQ with respect to the preliminary cofactor matrix Q 2(0) is

obtained fiom the relation

GQ,=(G+G)(Q, +AQ) =1 (9113)
where I denotes the urit matrix. This equation is reformulated as

(Gi +G)AQ = I~ (G1+G)Q,, (9 114)
and, since 4 Qz(o) = I, this reduces to

(G + @) AR =-G,Q (9.115)

— %0}

01

AQ = ~(G1+Ga) G2 Q (9.116)

{0}



