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Abstract— A testing procedure is presented to estimate
topography and deformation parameters from an interfero-
metric stack (a number of reference phase corrected inter-
ferograms w.r.t. the same master image). A subset of pixels
exhibit coherent phase in time, and a time series of phase
differences between pairs of these pixels allows to set up a
system of equations. A null hypothesis of zero deformation
can be tested against alternative hypotheses, specifying lin-
ear and non-linear deformation. The covariance matrix of
the phase differences accounts for phase noise, atmospheric
effects, and orbit inaccuracies.

I. INTRODUCTION

Spaceborne repeat-pass interferometric SAR (InSAR)
has been recognized over the last decade as a valuable tech-
nique for deformation studies. Spectacular results have
been obtained, e.g., showing the 2D deformation pattern
after earthquakes, or the inflation and deflation of vol-
canos. However, many of these studies have been rather
opportunistic: the deformation phenomena have a large
signal, are spatially limited, or occur over a short time in-
terval, while the observed areas remain relatively coherent
in time and have minimal atmospheric variation. In these
circumstances, successful results are almost guaranteed.

In (more frequently occurring) non optimal situations,
where a small deformation signal needs to be detected
amidst atmospheric disturbances and temporal decorrela-
tion, the standard differential processing of a small number
of images generally yields much poorer results, resulting in
a highly decorrelated and biased interferogram. To use In-
SAR in those situations more advanced approaches of the
problem are inevitable.

Here we use stacks of interferograms, preferably utilizing
all available radar acquisitions. Instead of analyzing these
interferograms in the traditional 2D manner we search for
individual pixels that have consistent phase statistics in
time (1D). We follow the concept of the recently intro-
duced “permanent scatterers technique”, see [1]. To iden-
tify the consistent pixels this method typically requires a
large number of images and a priori assumptions on the
deformation characteristics. We present a methodology to
test alternative hypotheses against a null hypothesis for
different deformation models, e.g., linear vs. seasonal de-
pendent, and to use the distance between pixel pairs to
derive a priori variances to account for atmospheric dis-
turbances. In the experimental section of this paper the
proposed methodology is validated using a simulation.

II. METHOD

In this section we first derive the equations for reference
phase corrected interferometric phase differences between
two pixels. These phase differences can be regarded as
observations, containing information on the topographic
and deformation difference. The other contributions to
this phase, such as atmospheric delays, are moved to the
stochastic model. We assume we have N + 1 Single Look
Complex (SLC) images, or a stack (datacube) of N inter-
ferograms w.r.t. a master image at time ¢t = 0.

In Fig. 1 the geometric configuration and notation is
shown. Sub-indices indicate time (or acquisition number,
which is equivalent); the number 0 is used for the master
image. A superscript ° indicates a relation with the ref-
erence body, for example an ellipsoid or DEM. The phase
is denoted with ¢, and the reference corrected phase by
v. The far-field approximation is used where appropriate,
assuming parallel range vectors.

The phase in SLC image i, for pixel P, at ¢t = i is defined
by

¢i=—4—”ri+¢oi+¢Ai+¢ni, (1)

A
where r; = rq + Ar; — Bsin(f — a), 7 is the range to the
master satellite, Ar; is the deformation along the line of
sight, ¢., indicates the scattering characteristics, ¢, the
phase due to atmospheric delays, and ¢,, the noise. The
reference phase for the same pixel P is defined as

¢ =——1i; (2)

where r? is the range from the satellite position at t = ¢
to the reference point P° located at the reference body
at a distance rg to the master spacecraft, such that the
range vector is zero-Doppler. The phase of SLC image 1,
corrected for the reference, is denoted by v; = ¢; — ¢. The
interferometric phase w.r.t. the master image corrected for
the phase of a reference body is

Vo; = Vo — V;
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Fig. 1. Geometric configuration and definition of symbols. All angles
are defined counterclockwise. The terrain element P correspond-
ing to the radar coordinate (azimuth, range) is located at a height
h above the reference body at ¢ = tp. The inset shows that at
t = t; the point P can be deformated by Ah;, with its projection
on the direction of the line of sight Ar; (positive direction same
as B||). Note that the angles are exaggerated and the baselines
magnified. The angle §6 is approximately 1° for an elevation of
5 km for ERS satellites.

= Vi + ¢D0i + ¢°01’ + ¢A0i + ¢ﬂ0i (3)

(Bﬁ — B = 60B] can be easily derived geometrically
from Fig. 1.) Topography is included in this expression
by rewriting 60 (h = ro(cos8° — cos@) = —2rg[sin((6° —
0)/2)sin((6° + 6)/2)] ~ rodfsin §°).

Obviously, radar interferometry only works if the scat-
tering characteristics remain more or less equal for
t ={0,i}, i.e., ¢,,, = 0 in (3), which implies low temporal
decorrelation. This condition is in general only satisfied
for a small subset of all pixels, resulting in a noisy inter-
ferogram. This subset can be referred to as “permanent
scatterers”. A part of this subset can be identified based
on a time series of the amplitude values, see [1], [2]. The
problem is to estimate topography and deformation of this
subset.

The noise term in (3) should be small, as well as the
atmospheric difference. The expectation of the latter term
is zero, but its variance can be significant, depending on
the water vapor distribution during the two acquisition [3].

A. Phase differences

Considering phase differences between nearby pixels—for
which temporal decorrelation is limited-has the advantage

that the atmospheric phase difference term decreases due
to its strong spatial correlation. The same is true for errors
in the computed reference phase based on precise orbits.
The notation (x1,z2) is used to indicate the difference be-
tween two pixels in the interferograms. The following ex-
pression is valid for the interferometric phase difference

voi(@1,22) = W{vg (1) — vg;(22)}
= vroi(21, T2) + dpoi(z1, T2) +
Goso (T1,T2) + Pa,o (21, 72) + ¢uyy (21, 72) —
koi(z1,x2) - 2m, (4)

where the topography and deformation terms are

vnar,an) = 5 Ty~ ey, Q
¢o (z1,22) = 4T7r [Argi(x1) — Argi(2)] . (6)

The phase of the complex interferogram is wrapped, de-
noted by the superscript W. The ambiguities ko;(z1,22) €
Z are defined such that vy, (71, z2) lies in the principal in-
terval [—m, ). At this point we also would like to model
the deformation along the line of sight as a function of
time, e.g., as linear deformation

A7"75('7:) = Tt “ M- (7)

The temporal baseline is defined as T; = (¢; —t0)/365 (¢; as
day number since some reference). However, depending on
the driving mechanism of the deformation, it can also be
modeled as, e.g., a linear part and a part with a period of
1 year, with a maximum in winter:

Ary(z) = Typa, +[cos(2m(Ty— At)) —cos(2r At) |z, ,  (8)

where o is the amplitude of the seasonal term, and At is
the shift of ¢y to January 1st, i.e., the maximum deforma-
tion is at time ¢y + At. It is noted that in order to estimate
this term, the sampling in time should be dense enough.
The number of parameters for the deformation model is
denoted by d. These equations can be written in matrix
notation as

th.’EQ

E(v}=[T D | 1I].|H=e];

k

D{V} =Qu, (9)

where the observations are the interferometric, reference
corrected, phase differences between locations z; and z2 at
times ¢t = 1, ..., N; vector T' (N X 1) defines the influence
of topography on the observed phase difference, see (5),
and D (N x d) the influence of deformation according to
a model (e.g., (7)), see (6). I is the identity matrix scaled
by 27. The unknown parameters are the topographic dif-
ference and d deformation parameter(s), and the integer



ambiguities ko; in vector k£ (IV x 1). The dispersion ma-
trix of the observations is a full matrix (N x N). In this
matrix atmospheric noise, orbit errors, and phase noise is
accounted for. The full covariance matrix for the interfer-
ometric phases can be written as the sum of a diagonal
matrix, accounting for the usual phase noise, and a full
matrix, accounting for the atmospheric covariances. The
atmospheric part can be computed from a covariance func-
tion based on the distance between locations z; and z» [3].
For our purpose, this matrix then must be propagated for
the difference between locations, yielding @),. Note that if
the variance of the interferometric phase is o2 then that of
the phase difference is 202, assuming equal accuracies.

We would like to solve the above equation for topogra-
phy and deformation, but this seems impossible. For each
observation we have an unknown ambiguity, besides the
parameters for topography and deformation. In general
such a system cannot be solved; there are more unknowns
than observations. However, usually we have extra infor-
mation. First, we know that the ambiguities are integers,
which reduces the solution space. Second, we can limit the
solution space by introducing maximum values for the to-
pographic and deformation differences. This leads to the
following algorithm:

1. Obtain maximum values for the unknown topography
and deformation parameters.

2. With these maxima, compute a (large) number of
unique sets of ambiguities, such that the solution space
is sampled properly. (Each set represents a certain un-
wrapping attempt, which can be regarded as an alternative
hypothesis.)

3. For each set, unwrap the data with these ambiguities
and assume as null hypothesis Hy: E{v} = T -hy,,,, i€,
no deformation. Test the null hypothesis against several
alternative hypotheses. The DIA testing procedure is [4]:
Detection Test the overall validity of the null hypothesis
with the overall model test (OMT, see (13)). If the null hy-
pothesis is accepted, use this estimate for the topographic
difference. Else, continue with the identification step.
Identification If the null hypothesis is rejected, possible
model misspecifications need to be identified. Compute
the OMT for all alternatives that are accepted. It is stan-
dard practise in geodesy to always first check the individ-
ual observations for potential blunders (data snooping).
Since we already check different ambiguity sets, these con-
ventional alternative hypotheses are not considered in this
step. The first alternative hypothesis is an extension of the
model with linear deformation Ha: E{v} = Thy,z, + Dp1.
The second alternative hypothesis that is tested is that
linear and seasonal deformation occurs. Other alternative
hypotheses could be tested, for example specifying break-
points where linear deformation starts. The (accepted)
alternative hypothesis with the best OMT test statistic is
regarded to have identified the model errors.

Adaption If the model misspecifications have been iden-
tified, the null hypothesis is replaced by that alternative
hypothesis. The overall validity of this model needs to be
detected again, and, if rejected, the stochastic model may

be relaxed, since an estimate for the variance factor is given
as 6 = OMT/(m —n). As a final step data snooping can
be performed.

B. Hypotheses Testing

The correctness of a model of observation equations may
be verified by several hypothesis tests. The null hypothesis
reads Hy: E{y} = Az, with A the full rank m x n design
matrix, and = the vector of parameters. An alternative
hypothesis is specified as Hy: E{y} = Az + C'V, where V
is some g x 1 bias vector, and C' a m x ¢ matrix specifying
the test. [A|C] needs to be of full rank [4]. This means that
we must have a suitable distribution of interferograms over
time and space. If for example the perpendicular baseline
for all images would be zero meters, topography cannot be
estimated. The general expression for the test statistic is
T, = €7Q, C[CTQ,Q:Q,C] CTQ e, (10)
where € is the vector of least squares corrections with co-
variance matrix ();. The (unwrapped) observables are as-
sumed to be normally distributed, in first order approxi-
mation, which implies that the test statistic has a x? dis-
tribution
Ho: Ty ~ x*(¢,0); Ha:Ty~x*(g, ), (11)
where A = VI'CTQ/Q:Q,CV is the non-centrality pa-
rameter. The null hypothesis is rejected if

T, > x4 (q,0),

with x2(g,0) the critical value, and « the level of signifi-
cance (probability that Hy is falsely rejected). If the alter-
native hypothesis is accepted, this is however no proof that
this model is correct. The most common tests in geodetic
practise are the test for blunders in individual observations
(w tests) and and the overall model test (OMT). For the
first type of test, the C' matrix is [0, ..., 0, 1,0, ..., 0]7, where
the 1 is at the ith position when we test for a blunder in
the ith observation. If all observations are systematically
tested this way, it is referred to as data snooping. For a di-
agonal covariance matrix, this test reduces to w; = &;/o;.
For the OMT, matrix C' does not need to be specified. It
gives an indication of the validity of Hp. This test statistic
is given as

(12)

T =el'Qle.

Y (13)

III. EXPERIMENT

In this section we validate the proposed testing proce-
dure by means of a simulation. The configuration of the
acquisitions is shown in Fig. 2, where we assumed 19 in-
terferograms, with perpendicular baselines between -868
and 761 meters, and temporal baselines between -3.7 and
4.4 years. For a pair of pixels, approximately 2 km apart,
we have simulated noisy observations for the phase differ-
ence for each interferogram. Three input parameter sets
{hzyzq, 1, 2} were used: {10, 0, 0}, {10, 10, 0}, and {10,
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Fig. 2. Interferogram distribution relative to master SLC (x). The
location of the interferogram is given as function of temporal
baseline on the vertical axis and perpendicular baseline on the
horizontal axis.

10, 10}. The noise standard deviation for the phase differ-
ence was set to 20, 30, 40, and 50 degrees. This corresponds
to coherence levels of 0.99, 0.97, 0.95, and 0.92. Covari-
ances are not taken into account. For each noise level, 100
simulations have been performed, estimating the parame-
ters according to the testing procedure. Maximum values
to limit the search were set to 20 m for topography and 20
mm/year for the deformation parameters.

The estimates that were accepted are plotted in Fig. 3
for these three cases. Evidently, the procedure works bet-
ter for a small standard deviation. For these noise levels,
only in a very small number of cases the wrong model was
accepted, and in those cases the estimates for the defor-
mation parameters were close to zero (the “true” value).

Table I shows for each case the number of times the
OMT was accepted, although the wrong ambiguities were
found. The total number of times the OMT was rejected
is given in parentheses. For large standard deviations, the
null hypothesis is often falsely accepted. This imposes lim-
itations on the maximum allowable standard deviation of
the phase observations, in order to retrieve the correct am-
biguities and the topography and deformation parameters.

IV. CONCLUSIONS

A three step testing procedure is presented to estimate
topographic and deformation parameters from an interfer-
ometric stack. The significance of alternative hypotheses
specifying deformation models against a null hypothesis of
zero deformation can be tested. The procedure consists of
Detection, where the overall validity of the null hypothesis
is tested; Identification, where the model misspecifications
are identified if the null hypothesis was rejected; and Adap-
tion, where the null hypothesis is replaced by the identified
alternative hypothesis.

It has been shown by simulation that with this procedure
non-linear deformation can be identified between pairs of
pixels, provided that the noise level is limited.

TABLE I
FALSELY ACCEPTED AND TOTAL REJECTED OMTS FOR THE THREE

TESTCASES.
case \“ 20 30 40 50
1 0(33) 0(51) 5 (46) 84 (0)
2 0(46) 0(59) 0 (70) 83 (0)
3 0(33) 0 (47) 7(68) 31 (52)

For each case, 100 simulations have been performed for 4 levels of phase
noise. Given is the number of accepted OMTs, for which the wrong
ambiguities are recovered. In parentheses the total number of rejected
OMTs is given.
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Fig. 3.  Simulation results. Plotted is the distribution of 100
estimated topography and deformation parameters as function
of input noise level. The input parameter values are centered
at the horizontal axis for the three cases (from left to right
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