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Abstract— This paper addresses the question of how to robustly
estimate linear deformation at a large number of points from
differential phase in an interferometric stack. The so-called
“Permanent Scatterers technique” [1], uses a relatively large
number of differential interferograms of the same area, co-
registered at the same master SLC image. Linear deformation
rates and DEM errors are estimated for pixels that have limited
temporal decorrelation. This straightforward and generic setup
has been used in a network approach that uses connections
between nearby points to compute a velocity field for large areas.

I. INTRODUCTION

Using a multi-temporal dataset can overcome the problems
of 2D phase unwrapping and atmospheric artifacts in con-
ventional radar interferometry. The loss of spatial coherence
due to temporal decorrelation is the main cause of the phase
unwrapping problem. A very generic approach using point
scatterers time series has been recently introduced that cir-
cumvents this problem by only considering pixels that have no
temporal decorrelation, “the Permanent Scatterers technique”
(PS), see [1]. Since temporal decorrelation results from (ran-
dom) physical changes of the individual scattering centers
within each resolution cell over the time period between
observations [2], point scatterers by definition do not suffer
from this effect. The PS technique can be applied to data with
large perpendicular baselines, even from different sensors with
slightly different wavelengths. Applications include convenient
and low-cost monitoring of the global deformation pattern
of cities, movements of individual buildings caused by infra-
structural projects, stability analysis for industrial complexes,
as well as monitoring of deformations caused by mining. The
most important features of the PS technique are that it enables

• straightforward data handling and processing;
• combination of all available ERS images in the data

archive, regardless of perpendicular baseline or Doppler
frequency;

• extension of the time series with data of ENVISAT, which
operates on a slightly different wavelength;

• computation of (low frequency parts of) the atmospheric
phase;

• circumvention of spatial unwrapping in favor of an im-
plicit time wise unwrapping.

The next section describes the differential interferometric SAR
processing system, followed by the estimation strategy and
application to Berlin, Germany.

II. INSAR PROCESSING

The following is a listing of mainly differences with con-
ventional processing to describe how we compute a stack of
differential interferograms.

• Image selection: For many areas there is a considerable
amount of data available, and if not all images can be
bought, a choice needs to be made regarding which data
to process. An extremely useful tool for this selection is a
baseline plot, which shows the distribution of the images
as function of perpendicular and temporal baseline, and
of Doppler frequency. We select images, in a (semi-
)automated way, that are as equidistant as possible in
time, spanning the period of interest. We prefer to select
images with limited perpendicular baselines to reduce
geometric decorrelation and topographic induced phase.

• Master image selection: A master image is selected on
which all other images are co-registered. This image lies
centrally in the baseline plot, i.e., in time, space and
Doppler frequency. This choice reduces problems during
the co-registration. The selection of a master l is auto-
mated by computing a total correlation for each possible
stack as γl = 1/K

∑K
k=0 c(Bk,l⊥ , 1200) × c(Tk,l, 5) ×

c(fk,l
DC , 1380), where c(x, α) = 1 − |x|/α if α < x;

0 otherwise. Note that here the temporal baseline is in
years, and that the divisors can be regarded as critical
baselines for which total decorrelation occurs.

• Amplitude calibration: The amplitude of the SLC images
are calibrated for sensor gain, range spreading loss, and
antenna pattern. This is performed to be able to analyze
the amplitude time series, but it also generates as a by-
product a high resolution mean amplitude map, with a
high number of looks.

• Data oversampling: The complex data are oversampled
by a factor of two in both directions in order to avoid
aliasing effects in the interferometric phase.

• Differential interferogram generation: The interferograms
are corrected for topographic signal using an external
DEM. If available we use the DEMs generated from the
X-SAR shuttle mission [3], otherwise a DEM derived
from the ERS tandem mission. But any available DEM
can be used to reduce the topographic signal.

• Filtering: No spectral or phase filtering is applied during
the InSAR processing, since we do not want to affect the
phase of the point scatterers selected for analysis.



Fig. 1. Data flow for differential interferometric SAR processing and
preliminary identification of point scatterers.

Fig. 1 shows the data flow for a “Permanent Scatterers”
system, taken from [4]. Input are K +1 Single Look Complex
images. The amplitude is calibrated and is the basis for the
selection of point scatterers, as shown on the lower right.
The interferograms are generated and a DEM is used to
compute the differential interferograms. Now that we have the
interferograms, points have to be selected that are most likely
to contain a limited amount of temporal decorrelation.

A. Identification of pixels with limited temporal decorrelation

Note that the phase information itself cannot be used for
detection of stable points, since it contains phase induced by
unknown elevation and deformation. Ferretti pointed out that
the amplitude time series can be well used for this [1]. By far
most pixels of the interferograms are not expected to contain
useful phase information due to temporal decorrelation. Indeed
most interferograms resemble random noise on visual inspec-
tion. It is expected, however, that pixels with a relatively large
calibrated amplitude ak in all SLC images k = 0 . . . K, have
a relatively small phase standard deviation, and contain useful
phase information. The selected pixels fulfill two criteria; the
amplitude is above a threshold N2 in at least N1 SLC images
(2), and the ratio of the standard deviation and mean is above
another threshold N3 (2).

K∑

k=0

αk ≥ N1, αk =
{

1, ak > N2
0, otherwise

(1)

σa

a
≥ N3. (2)

These thresholds do not have to be extremely selective since
in the first step of our algorithm only the best pixels are
considered. Analysis of the phase data itself will reveal if
the other selected pixels are reliable or not. The pixels that
are not selected in this step are discarded in the further

processing, since it is not expected that they contain useful
phase information.

B. Estimation between pixels

We consider phase differences between nearby points in
order to limit the influence of atmospheric delays and orbit
errors. The functional relation of the phase difference between
points P and Q of the reference phase corrected differential in-
terferogram k with DEM error difference hP,Q and deformation
rate difference vP,Q, is given as

φk
P,Q = −4π

λ

Bk⊥P

r
P
sin θ

P

hP,Q − 4π

λ
TkvP,Q + φl

ATMOP,Q
, (3)

where the wavelength is denoted by λ, the perpendicular
baseline by B⊥ , the slant range by r, and the viewing angle
by θ . Note that for a system with multiple wavelengths, the
wavelength is that of the slave sensor.

The interferometric atmospheric phase difference at the
points is the difference during the acquisitions for master l
and slave k, φk

ATMOP,Q
= φl

ATMOP,Q
− φk

ATMOP,Q
. In (3) we added the

atmospheric phase for the master l, since this is present in all
interferograms as a bias in the time series approach. Note that
(3) describes a plane in the conversion factors for height to
phase and velocity to phase, with the height and velocity as
slopes.

The noise on the phase difference is assumed to be Gaus-
sian. The variance of the phase noise of the difference signal
is twice that of a single point. The atmospheric signal of the
slaves is moved to the noise part. This can be done without
problem since the atmospheric states during the acquisitions
are unrelated, but fortunately are spatially correlated. The radar
signal travels through almost the same part of the atmosphere
for nearby pixels, and the phase offset due to water vapor is
also practically equal for both pixels. The further the pixels are
separated, the less correlated they will be. For distances up to
500 meter the atmospheric difference signal can be regarded
below the noise level of the observations, see [5]. The data is
assumed to contain no significant trends due to orbit errors.
We found it to be necessary to remove these errors in a pre-
processing step, however.

From the observed phase time series of the differential
interferograms, we would like to infer the elevation difference
and deformation rate difference. This is a non-linear problem,
since the observed phase is wrapped in the principal interval
[−π, π〉. Furthermore, the problem is relatively sensitive to
noise on the observations due to the non-linearness. There are
a number of solutions that are strongly correlated. The more
observations, the more distinguishable the correct solution is.

The absolute value of the ensemble coherence γ can be
considered as a norm

γ =
1
K

K∑

k=1

ejwk , (4)

with j the imaginary unit, and wk the residual between the
observed phase difference and the phase modeled according
to (3). The angle of the complex coherence is an estimate



for the mean residual phase between the points, i.e., φl
ATMOP,Q

.
We estimate hP,Q and vP,Q by maximizing the magnitude of
the coherence. The algorithm we applied systematically steps
through the solution space while evaluating the coherence. If
information is available on the quality of the interferograms,
for example from analysis of a coherent patch or from
meteorological data, it can be used to weight the residues
accordingly in (4).

III. NETWORK ALGORITHM

After the differential interferometry we assume to have a
set of pixel positions that are most likely to possess limited
temporal decorrelation, or none at all. The differential inter-
ferometric phase and calibrated amplitude are known for each
interferogram and position, as well as factors to convert phase
to height and phase to deformation rate (using the temporal
and perpendicular baselines, see (3)).

The idea of our algorithm is to first form a stable reference
network between the best points in this set, and thereafter to
estimate the parameters for the other points with respect to
this network. This enables a quality control and description
of the estimated parameters. It can be well compared to the
way new points are measured in classical geodesy, where
also first a reference network is established, and more points
are added later. For example, in a leveling campaign the
observations are tied to a national reference network of stable
points with known height. Since phase differences between
nearby pixels are considered, a large area can be processed,
without problems due to atmospheric disturbances.

A. Construction of reference network

To form a reference network, we want to find a set of
pixels that are distributed equally over the area of interest,
and that have a phase that is induced mainly by elevation
and (linear) deformation. Therefore, a grid is placed over the
interferogram, and in each grid cell the pixel is selected that
has the largest ratio of amplitude standard deviation and mean
amplitude (2). To avoid pixels very near to each other, this
procedure is repeated with the grid shifted by half the cell
width in both directions. This ensures a minimum distance
between selected pixels of half the cell width. Typical values
for the cell width are in the range of a few hundred meters.
Before placing the first grid, points are removed with a very
low mean. This procedure does not guarantee that the selected
pixels have a linear deformation pattern, of course. But this is
not an uncommon assumption, since it is likely that most pixels
deform at a constant rate for most applications. Furthermore,
the relative deformation of nearby pixels is considered, making
it more likely that the difference in deformation is dominantly
linear with time. Also, pixels that do not fit in with the other
pixels in the reference network are removed in the testing
procedure described below. A network is constructed between
the pixels selected to serve as reference for the other pixels.
This means that pixels in each others proximity are connected
via arcs (in its most simple form by Delaunay triangulation),

and that the height and velocity rate differences are estimated
at these arcs by maximizing the coherence (4).

It is important to note that these estimates are not “inde-
pendent observations”; the phase difference time series used
to estimate the parameters are computed by subtracting the
phases at the pixels themselves, and are not observed at the
arcs of the network. This means that, for example, if the height
differences in a small triangle are considered, the closing error
by definition must equal zero. However, a closing error can
occur for several reasons. Since we sample the solution space,
we may do this too coarsely and miss the global maximum for
a certain arc. Also, the signal we are looking for may simply
lie outside our search space, and it will alias somewhere in
our estimation. Finally, the point we consider may not be a
coherent point at all, meaning that all arcs to this point are
randomly estimated.

B. Adjustment and testing of reference network

After we have obtained estimates for DEM error, velocity,
and atmospheric differences between the points of the ref-
erence network, a least squares adjustment is carried out to
obtain the values for these parameters at the points. These dif-
ferences are adjusted separately, much like an ordinary leveling
network is adjusted. Because the observations are themselves
estimated from the phase time series at the points—and not
observed at the arcs—the adjusted residuals should be zero,
i.e., there should be no inconsistencies. The goal of the testing
step is to identify and remove points and arcs that are not
reliable, until a stable solution has been reached.

1) Adjustment: A system of linear equations can be written
as

E{y} = Ax; D{y} = Qy. (5)

The functional model links the observations in vector y [m×1]
to the unknown parameters x [n × 1] via the design matrix A
[m×n], while the stochastic model describes the dispersion of
the observations by the variance-covariance matrix Qy [m×m].
In our application this matrix is assumed to be diagonal. The
observations contain the differences at the arcs of the network,
and the design matrix contains -1 and 1 at the corresponding
places. It is the same for all three networks. The least squares
solution for the parameters is given by [6]

x̂ = (ATQy
-1A)

-1
ATQy

-1y. (6)

The adjusted observations are given by ŷ = Ax̂, and the
residuals on the observations by ê = y− ŷ. The least squares
estimate ensures a minimum l2 norm of the adjusted residuals.

Note that in order to obtain a solution, a reference point
needs to be chosen. All estimates are relative to this point.

2) Testing: It is good practice in geodesy to always perform
statistical tests of the least squares adjustment for model mis-
specifications and outlier observations (“blunders”). In our
case, we perform combined tests for the three networks, since
it cannot be the case that, for example, an arc is wrong in the
estimated height differences, but not in the velocities.



The most general test that can be performed is called the
Overall Model Test (OMT). If this test is rejected, it means that
either the functional, or the stochastic model contains an error.
It is also possible to use alternative hypotheses specifying a
gross error in an individual outlier (in all three networks), or
for all arcs leading to a point (in all three networks). We refer
to these tests as w-tests and p-tests respectively.

In order to compare these tests of different dimensions, and
to identify what is the most likely alternative hypothesis to
accept, these tests are normalized by division by their critical
values. As power for all tests a value of 0.50 must be chosen.
Furthermore, we choose a level of significance for the 1D-test
of 0.001. The required a-priori variances for the differences
at the arcs are computed from the estimation itself (i.e., from
the baseline configuration). Also see [7].

A DIA testing procedure is followed. If the OMT is rejected,
and a mis-specification Detected, the most likely cause is
Identified by specifying several alternative hypotheses. Finally,
the functional model is Adapted for this by removing the
concerned observations from the observation vector, design
matrix, and possibly vector of unknowns, and then the OMT
is computed again. This can be summarized in pseudo-code
as

while (OMT > 1)// Detection
compute::w-tests;// Identification
compute::p-tests;
if (max(w-tests)>max(p-tests)

remove::identified arc;// Adaption
else

remove::identified point;
compute::LS adjustment reduced system
compute::OMT quotient

C. Estimation w.r.t. reference network

Once the reference network is established, i.e., the elevation
and velocity rate of the points in the reference network are
computed and tested, the other originally selected points can
be estimated with respect to this network. Each new point is
connected to a maximum of five nearest points of the reference
network within a maximum range (3 km), and the elevation
and velocity rate differences at these arcs are estimated in
the same manner as for the arcs of the reference network by
maximizing of the coherence (4).

After this step, the reliability of the new points can be
evaluated by the residues at the arcs to the reference network,
or by using the estimated coherence.

IV. TEST AREA BERLIN

The algorithm has been applied to analyze the city of
Berlin, Germany (frame 2547, track 165). We used 69 SLC
images, spanning a time period of 8.5 years. The span of
the perpendicular baselines was 2100 meter. The area we
computed was approximately 25 by 25 km, and about 200,000
points were identified as possible stable point. The reference
network contained 2090 points, with a mean distance at the
arcs of 600 m. The estimated linear deformation in the line
of sight is shown in Fig. 2. Plotted are about 60,000 points

Fig. 2. Estimated linear deformation for Berlin.

with a coherence above 0.70, in the interval [−4, 4] mm/y.
The background is the mean calibrated amplitude, and an
interpolated velocity is drawn in a transparent layer. The
reference point is plotted as an asterisk. It can be observed
that deformation is taking place in the west at a rate of a
few mm/y. We validated these results by processing a parallel
track with the network algorithm. This work is ongoing, but
first results are very encouraging.

V. CONCLUSION

The presented network algorithm for analysis of multi-
temporal interferometric data is a robust estimator that can
be applied in many cases. The processed area is unlimited in
size, as long as point scatterers are within a few kilometers.
The suggested testing procedure enables a robust and reliable
estimation, also when less data is available then we used in
the example provided.
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