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ABSTRACT

In radar images, point scatterers provide reflections
that can often be attributed to a single physical ob-
ject, usually smaller than the resolution cell size.
Stable point scatterers with high backscatter coef-
ficients through time (mainly ’man-made features’)
are potential targets for InSAR deformation analy-
sis.
A-priori knowledge about the observation statistics
of InSAR point scatterer measurements is necessary
to give an independent quality description of the esti-
mated (deformation) parameters. Using the Signal-
to-Noise Ratio (SCR) from SAR images an a-priori
estimate of the phase variance can be obtained.
A controlled corner reflector experiment has been set
up with leveling as an independent validation tech-
nique. In the period from March 2003 to June 2004
the movements of five corner reflectors in the area
near Delft University of Technology have been mon-
itored using leveling and repeat-pass InSAR (ERS-2
and Envisat).
Double-difference observations, the first observa-
tions that bear interpretable information, are used
for comparing the InSAR and leveling measure-
ments. The stochastic model is set up as a variance-
covariance matrix, estimating a-posteriori variance
factors for the observation groups leveling, ERS-2
and Envisat. From the results it can be concluded
that the a-priori phase variance based on SCR for the
corner reflectors (σ ∼0.4mm) is significantly overes-
timated. The estimated a-posteriori InSAR phase
standard deviation is 3.1 mm for Envisat and 3.9
mm for ERS-2 (mm, vertical).

1. INTRODUCTION

The Persistent Scatterer (PS) InSAR technique [1]
uses observations from selected stable point scat-
terers having high backscatter coefficients through
time. These point scatterers provide reflections

that can often be attributed to a single physical
object (’man-made feature’), usually smaller than
the resolution cell size.

PS’s serve as measurement points for deformation
analysis. Using InSAR observations, the first
information-bearing variate is the phase difference
between two interferometric resolution cells: the
double- difference phase observation [2]. Besides de-
formation information, this wrapped observable also
contains contributions due to (residual) topography,
orbital errors and atmospheric signal.

Several techniques are currently used to estimate
these parameters. One of these techniques is based
on searching the solution space optimizing the
single-pixel multi-interferogram complex coherence
based on the phase residuals through time [3].
Another approach is presented in [4], constructing
a mathematical model, taking the stochastic nature
of the observables into account. The integer phase
ambiguities are estimated using the LAMBDA
method [5], treating the ambiguities as stochastic,
not deterministic.

As the application of the PS-InSAR technique is
expanding towards decorrelated areas with low
PS density and a small deformation signal, the
quality description of the estimated (deformation)
parameters becomes more and more important.
As the precision of the phase observables directly
influences the parameter estimation, it is important
to properly define their variance-covariance matrix.
The probability density function of distributed
scatterers is well known [6], but determining the
variance of a point scatterer phase observation is
not trivial. Contrary to other geodetic measurement
techniques, the variance of the observable is not
very well known a-priori. The reason for this is
that precision of a double-difference point scatterer
phase observation depends both on the device
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measurement precision and the physical properties
of the point scatterer and its surroundings. These
two effects cannot easily be separated.

As shown in [3] there is a relation between the
coherence and the variance of the phase observable
of a point scatterer. However, the point scatterer
coherence is based on the residuals of the PS-InSAR
parameter estimation, and therefore these param-
eters have to be resolved first. The consequence
of this is that model imperfections are mixed with
the point scatterer observable variance. To be able
to give an independent quality description of both
the stochastic model of the observables and the
estimated parameters, they have to be set up sepa-
rately, forming together an integrated mathematical
model on which adjustment and testing theory can
be applied. Here we focus on the stochastic model of
the PS-InSAR double-difference phase observations.

Besides the measurement device precision, the point
scatterer phase observation precision is dependent
on its physical properties and the surroundings.
The physical properties determine the strength and
the pattern of the reflection. The surroundings can
be interpreted as an amount of scatterers, which
all have their own sinc pattern in space. These are
overlaying the point scatterer reflection pattern,
introducing noise on the point scatterer phase
observation. Considering the point scatterer as a
signal plus circular random gaussian noise, it has
been shown that the point scatterer phase variance
can be estimated using the Signal-to-Clutter Ratio
(SCR) [9]. This estimate is unbiased for a low phase
variance (≤ 0.25 rad) and assumes ergodicity of the
surroundings.

In this research, the SCR is used for obtaining an
a-priori estimate for the phase variance. This means
that one point scatterer may have different variances
through time, depending on the surroundings. As
the SCR is a spatial estimate from the SAR image,
parameter estimation is not needed to obtain the
phase variance. In this way the stochastic model is
set up independently from the functional model. To
verify this approach, the InSAR phase observations
of the Delft corner reflector experiment [7] are used.
Five corner reflectors have been deployed in the
fields of Delft Technical University since March 2003.
Each satellite pass, a precise leveling was carried
out, to validate the phase history of the corner
reflectors. The InSAR and leveling time series of
these five point scatterers are used to validate the
stochastic model of the InSAR phase observations.
A corner reflector experiment that compares InSAR
with GPS measurements is described in [8].

This paper is split up in the following two sections:

• Point scatterer theory and SCR estimation of
the five corner reflectors through time, check-
ing their dependence on temporal baseline and
Doppler shift.

• A-posteriori precision estimation for leveling,
ERS-2 and Envisat double-difference obser-
vations, starting from the a-priori variance-
covariance matrix based on SCR.

2. PHASE VARIANCE ESTIMATION
BASED ON SCR

2.1. Point scatterer

∆Φ

Im

Re

Figure 1. Point scatterer

The Signal-to-Clutter Ratio (SCR) is used for esti-
mating the phase variance of a point scatterer, based
on its physical properties. A point scatterer is con-
sidered as a deterministic signal s, disturbed by clut-
ter c: random circular gaussian noise of distributed
scatterers in the surroundings (Fig. 1). The underlin-
ing of a variable indicates its stochastic nature. The
complex SLC SAR observable of a point scatterer z
is defined as

z = s+ c = a+ ib+ u+ iv = (a+ u) + i(b+ v) (1)

u, v∼N(0, σ) Re(z)∼N(a, σ) Im(z)∼N(b, σ) (2)

where σ is the clutter standard deviation for Re and
Im. According to this definition, the phase residual

∆Φ = arctan
b+ v

a+ u
− arctan

b

a
(3)

is a nonlinear function of normal distributed vari-
ables. Therefore phase residuals are often not
normally distributed. Simulations have been per-
formed to verify the normality of the phase residuals
of a point scatterer, using a large number of samples.

A Goodness-of-Fit test indicates whether a dataset
consisting of a number of realizations stems from
a certain distribution. The Kolmogorov-Smirnov
test is such a Goodness-of-Fit test. It’s teststatis-
tic is defined as the maximum absolute difference



between the cumulative distribution of the dataset
and the cumulative hypothesized distribution, which
is in this case the normal distribution. The Lilliefors
Goodness-of-Fit test defines its teststatistic similar
to the Kolmogorov-Smirnov teststatistic, but also es-
timates the parameters of the normal distribution
from the dataset.
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Figure 2. Goodness-of-Fit for normal distribution of
points scatterer phase residuals.

The values of the Lilliefors teststatistic have been
computed for both the point scatterer phase resid-
uals and an equal number of independent samples
from the normal distribution, see Fig. 2. From
the deviation of the reference normal distribution,
indicated by the horizontal lines in Fig. 2, it can
be concluded that the phase residuals are only
approximately normally distributed if the phase
standard deviation is lower than 0.25 rad (≈2.2mm).

Methods to estimate the phase variance are the dis-
persion index Da [1] and SCR [9]. Both methods
start to develop a bias in the phase variance estimate
compared to the phase variance based on RMS at ap-
proximately the same point where the phase residu-
als cannot be assumed to be normally distributed
anymore. The question raises if only targets with a
SCR higher than 8 can be considered as point scat-
terers, or if the useful information in targets with a
lower SCR can be used, using different statistics to
describe their variance. However, this study focuses
on corner reflectors that have a SCR higher than 100.
It should therefore be possible to obtain an unbiased
estimate of their phase variance using SCR.

2.2. Signal-to-Clutter Ratio

Both Da and SCR can be used to detect Persistent
Scatterer candidates and both can be used to
estimate the phase variance. Da is a single-pixel
through time estimate, whereas SCR is a spatial
estimate. As the point scatterer phase variance

is mainly determined by the possibly changing
scattering characteristics of its surroundings, we
chose to base the estimate of the phase variance on
SCR.

SCR and the phase variance estimate [9] are defined
as

SCR =
s2

c2
(4)

σ2φ =
1

2SCR
(rad). (5)

SCR estimation has been performed for all five cor-
ner reflectors. The signal amplitude value s is the
maximum amplitude value of the oversampled sinc
pattern (factor 16) of the corner reflector.
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Figure 3. Windows used for SCR estimation with
maximum clutter samples (amplitude values).

For estimating the clutter, the boundaries of the
sinc pattern of the corner reflectors were traced
using an edge detector. This resulted in four areas
around the corner reflector not affected by the point
scatterer signal, see Fig. 3. There are several ways to
estimate the clutter from these four windows. The
most commonly used method is searching the four
areas with a small sampling window and detecting
the minimal clutter amplitude. However, it could
be argued that it is better to detect the maximum
clutter amplitude or using the average over the
full clutter area. The objective is to estimate the
clutter at the corner reflector position (resolution
cell). Clutter can be regarded as a collection of
distributed scatterers which have their own (smaller)
sinc pattern in space. As the SAR data is sampled
in range and azimuth direction, the side lobes are
only propagating in range and azimuth direction.
One would like to take samples within the corner
reflector azimuth and range boundaries as well,
but that is not possible as those samples would be
highly disturbed by the corner reflector’s own sinc
pattern. As a result of this, the sampling areas



are restricted outside the corner reflector’s azimuth
and range boundaries. When estimating clutter in
these regions, there is no reason to assume that
the ’true’ clutter of the point scatterer’s resolution
cell is equivalent to the minimum of the estimation
regions. In fact, it is certain that this will result in
a phase variance that is too small. Therefore, to
obtain conservative estimates of the phase precision,
we use the mean of the maximum of the clutter
estimates in the four sampling areas.

The clutter estimate is only unbiased if the ergodicity
assumption holds. As the corner reflectors have been
placed in a large homogeneous field, 200 meter apart,
this assumption is reasonable.
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Figure 4. SCR values for corner reflectors 1-5
through time, for ERS-2 (red) and Envisat (blue).

Fig. 4 shows the SCR for the five corner reflectors
for all available acquisitions. There is a slight
seasonal trend visible, which may be caused by
clutter changes due to vegetation changes in the sur-
rounding field or by thermal effects. The magnitude
of the SCR values is of the same order for ERS-2
and Envisat. As SCR should be purely depending
on the physical properties of the scatterer, it should
be sensor independent, what is confirmed by Fig. 4.
The order of the corner reflectors in terms of SCR
magnitude changes through time, but in general
the corner reflectors 2, 3, and 5 have a larger
SCR than 1 and 4. Especially after the damage of
corner reflector 1 (BT=-70 days), it is in the lower
SCR regions. Changes in SCR may be caused by
alignment changes towards the satellite or clutter
changes.

Note that it is not necessary to calibrate the SAR
amplitudes of the corner reflectors for the estima-
tion of the phase variance based on SCR. The cali-
bration causes the amplitudes to be multiplied by a
certain factor, depending on viewing geometry and
sensor characteristics. The viewing geometry depen-

dent factor is slowly changing from near to far range
and can be considered equal for the corner reflector
signal and the clutter in its direct surroundings. The
replica pulse power correction results in one factor for
the full scene. And finally, regarding the powerloss,
distributed and point scatterers within an area of the
radar footprint (around 5 by 5 km in azimuth and
range) are affected in the same way as they cannot
be distinguished within the full reflected signal. This
means, that for calibration the signal and the clutter
amplitude would be multiplied by the same factor,
that would cancel out in SCR.

2.3. Corner reflector SCR estimates

For all five corner reflectors SCR has been calculated
for the ERS-2 and Envisat acquisitions in the period
March 2003 - Jun 2004. Fig. 5 and 6 show clutter and
signal amplitudes and the estimated phase standard
deviations σφ in time.
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Figure 5. CR3: (a) minimum and maximum clut-
ter amplitudes against temporal baseline, (b) signal
amplitudes in time (c) σφ based on SCR in time (d)
signal amplitudes against Doppler for ERS-2. ERS-
2: red circles, Envisat: blue triangles.

Regarding the clutter, both minimum and maximum
have been plotted. The maximum clutter appears to
have a higher variation than the minimum clutter.
This might be due to fact that maximum clutter
corresponds to incidental clutter scatterers, whereas
the minimum clutter can be regarded as background
noise. Unlike the signal amplitudes, the clutter
seems to follow a slight temporal trend, but this is
not evident.

A clear offset is visible between the ERS-2 (red cir-
cles) and Envisat (blue triangles) signal amplitudes.
This is caused by the difference between the sensors,
but it may also depend on the alignment of the
corner reflector towards the satellite (look angle).
As the ERS-2 SAR images have large Doppler shifts,
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Figure 6. CR5: (a) minimum and maximum clut-
ter amplitudes against temporal baseline, (b) signal
amplitudes in time (c) σφ based on SCR in time (d)
signal amplitudes against Doppler for ERS-2. ERS-
2: red circles, Envisat: blue triangles.

which influences the viewing geometry in azimuth
direction, the Doppler shifts have been plotted
against the SAR amplitudes. The results for this
one year time span do not indicate a dependency of
the signal amplitude on Doppler frequency shift.

Note that also the Envisat clutter amplitudes are
generally below those of ERS-2. The offset decreases
with decreasing amplitude and it is therefore likely
that a multiplication factor connects the ERS-2 and
Envisat amplitudes, like in SAR calibration. When
looking at the estimates of the phase standard devi-
ation based on SCR, ERS-2 and Envisat are at the
same level. ERS-2 and Envisat signal and clutter dif-
ferences seem to cancel out in the SCR computation.

The estimated phase standard deviations do not
seem to vary significantly in time and the values
coincide for ERS-2 and Envisat. This would mean,
that estimation the SCR’s of the corner reflectors
in a single SAR image is enough to obtain a-priori
phase variances. However, it has to be noted that
the time dependence of the phase variance is likely
to be determined by the SCR of the point scatterer
relative to the changes in the direct surroundings.
In case the phase variance cannot be considered as
a constant value, it’s time dependency has to be
accounted for in the a-priori variance-covariance
matrix (vc matrix) of the InSAR observations, as it
influences the parameters to be estimated.

2.4. Statistics of wrapped double-difference
distributed phases.

For comparing the InSAR double-differences
with the leveling double-differences, the InSAR
double-differences are unwrapped to the closest
leveling double-difference. The misclosures are
therefore limited to half a cycle. This paragraph
deduces the maximum standard deviation of phase
double-differences to be expected in case the corner
reflectors would statistically behave like distributed
in stead of point scatterers.

InSAR phase measurements in this paper are ex-
pressed in mm along the vertical. This means that
in case of ERS-2, having an effective wavelength of
28.3 mm, the InSAR phase measurement range is

[−
λ

4 cos(θinc)
,

λ

4 cos(θinc)
] = [−15.4,+15.4]mm. (6)

Interferometric phase measurements, with W as the
wrapping operator, are defined as:

ϕm−s
cr =W{(φmcr − φscr)}. (7)

Double-differences are defined as the interferometric
phase measurements between two resolution cells or
PS’s at a certain distance:

ϕtm−ts
cra−crb

=W{(W{(φtmcra
− φtscra

)} −W{(φtmcrb
− φtscrb

)})}.
(8)

For distributed scatterers, the phase is uniformly
distributed. The range of the uniform distribution
is equal to [− λ

4 cos(θinc)
,+ λ

4 cos(θinc)
], expressed in

mm along the vertical. Fig. 7 shows the phase
distribution of InSAR phase measurements and the
double-differences, without and with applying the
wrapping operator. Without applying the wrapping
operator, the distribution of double-differences is
a double convolution of the uniform distribution.
However, when applying the wrapping operator,
SAR, InSAR and double-difference phase obser-
vations have the same uniform distribution for
distributed scatterers.

For point scatterers with a low dispersion index,
phases are approximately normally distributed. In
this case the variances of the double-difference phase
measurements can be calculated using the propaga-
tion law, assuming master, slave and the corner re-
flectors to be uncorrelated:

σ2
ϕ

tm−ts
cra−crb

= σ2
φ

tm
cra

+ σ2
φ

ts
cra

+ σ2
φ

tm
crb

+ σ2
φ

ts
crb

. (9)

The phase variances needed to calculate the double-
difference variance are estimated using the SCR of
each corner reflector in each SAR image.
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Figure 7. PDF of (a) interferometric phases of dis-
tributed scatterers, (b) double-difference interfero-
metric phases of distributed scatterers, (c) and (d)
wrapped interferometric phases of (double-difference)
distributed scatterers. Phase units are mm along the
vertical.

To judge the level of significance of the estimated
InSAR double-difference precision of the corner re-
flectors using leveling as validation technique, they
are compared to the maximum standard deviation
of double-differences of distributed scatterers. This
standard deviation follows from the uniform distri-
bution, depending on the effective wavelength:

σ2
ϕ

m−s

a−b

= (
λ

4 cos(θinc)
)2/3. (10)

For ERS-2 and Envisat this would result in a maxi-
mum double-difference standard deviation of 8.8 mm
for the InSAR-leveling comparison.

3. A-POSTERIORI PRECISION ESTIMA-
TION.

This section describes the a-posteriori precision esti-
mation of InSAR double-differences using indepen-
dent leveling measurements and Variance Compo-
nent Estimation (VCE). To validate the phase his-
tory of the corner reflectors, it is compared with
measurements from the independent leveling tech-
nique. First, the results of the performed levelings
will be shown. Consequently, the leveling and InSAR
double-differences are graphically compared. Finally,
the a-posteriori phase variances for ERS-2 and En-
visat are estimated using VCE and a mathemati-
cal model consisting of a functional model and an
a-priori stochastic model.

3.1. Leveling measurements

At the time of each satellite pass, a leveling of the
five corner reflectors was performed. The leveling
network has been designed containing redundancy,
which makes it possible to detect erroneous height
difference measurements. The leveling network con-
tains two benchmarks founded on a stable subsur-
face layer. Through time, the height difference be-
tween these benchmarks varies at most 0.5 mm and
can therefore be considered as stable. However, the
corner reflectors have been established in a shallow
subsurface layer and appear to be moving 1–2 cm
seasonally. As the leveling height measurement pre-
cision is around 0.3–1.5 mm, this seasonal movement
is significant and it should be possible to detect it us-
ing InSAR.
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Figure 8. Leveling heights and standard deviation for
CR3 and CR5.

Fig. 8 shows the estimated leveling heights and
their precision for corner reflectors 3 and 5. They
result from the adjustment and testing procedure
of the leveling network height difference observa-
tions. Erroneous observations were traced using
datasnooping and removed. The seasonal trend is
visible. Time t = 0 corresponds with September
2003; during summer the corner reflectors subsided
whereas in autumn the uplift started. Possibly
precipitation expanded the subsurface layer. The
height standard deviation varies between 0.3 and
1.5 mm, depending on weather circumstances and
leveling network construction.

The adjustment and testing procedure results in a
vc matrix for the estimated heights. The covari-
ances between the corner reflector heights depend on
the network design. This vc matrix, containing both
variances and covariances is used to create the vc ma-
trix of the leveling double-differences, using the prop-
agation law. The vc matrix of the leveling double-
differences is then used in the a-priori vc matrix for
the InSAR-leveling double-differences comparison.



3.2. InSAR-leveling double-differences

As mentioned in the introduction, the double-
difference phase observation is the first variate,
that bears interpretable information. Therefore the
InSAR-leveling comparison is based on these double-
differences. One master has been chosen for both
ERS-2 and Envisat (September 2003), and all spatial
differences have been referenced to corner reflector 2.
As the maximum distance to the reference corner re-
flector is 600 meters, atmospheric effects are assumed
to be canceled in the spatial difference. To be able
to compare InSAR and leveling double-differences,
the InSAR phase double-differences have been trans-
formed to mm along the vertical, using the incidence
angle.
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Figure 9. Time series leveling, ERS-2 and Envisat
double-differences for CR 3.
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Figure 10. Time series leveling, ERS-2 and Envisat
double-differences for CR 5.

Fig. 9 and 10 show the leveling, ERS-2 and En-
visat double-difference time series for two of the
corner reflectors: 3 and 5. For corner reflector 3,
the Envisat double-differences match the leveling
double-differences closely, whereas ERS-2 exhibits

high deviations. For corner reflector 5, there seems
to be a deviating trend in time of the InSAR double-
differences from the leveling double-differences.

The cause of the ERS-2 deviations from the leveling
may be found in the interferometric processing chain.
We note that our implementation to compensate the
influence of the position of the point scatterer within
the resolution cell on the phase measurement needs
to be improved for large baselines and large Doppler
shifts. The deviating behavior of both Envisat and
ERS-2 from the leveling double-diffferences may be
caused by physical changes of the corner reflector
in time. The corner reflector’s blades for instance
may be sagging in time, increasing the InSAR mea-
surements systematically in time. Whereas the apex,
to which the leveling measurements are referenced,
stays the same.

3.3. Stochastic model

To apply the Delft adjustment and testing the-
ory a functional model, describing the relation
between observations and unknown parameters,
and a stochastic model has to be set up. The
stochastic model is described by the vc matrix of
the observations Qy, in this case the InSAR and
leveling double-differences. An a-priori vc matrix
is constructed using the vc matrix of the leveling
heights from the leveling network adjustment and
the variances based on SCR of the InSAR double
differences as described in Eq. 9. The corner
reflector’s interferometric phase measurements are
assumed to be uncorrelated in time and space.

The a-posteriori precision estimation for InSAR
and leveling double-differences is performed apply-
ing Variance Component Estimation [10] using the
disjunctive group model. The observables are par-
titioned into 3 uncorrelated groups: leveling, ERS-2
and Envisat. The dispersion of each group is de-
scribed by a vc matrix Qk with an unknown variance
factor σ2k:

Qy =

3
∑

k=1

σ2kQk =





σ2LevQLev 0 0
0 σ2E2QE2 0
0 0 σ2ESQES





(11)
where

Qy vc matrix of observables,
σ2k variance factor for observable group k,
Qk vc matrix of observable group k,
Lev leveling,
E2 ERS-2,
ES Envisat.



Using the Delft adjustment and testing theory [11]
[12], unbiased estimates for the variance factors can
be obtained solving the following set of equations:

σ̂ =





σ̂2Lev
σ̂2E2
σ̂2ES



 = N−1l (12)

Nkl = trace(Q
−1
y P

⊥
AQkQ

−1
y P

⊥
AQl) (13)

lk = y∗Q−1
y P⊥

AQkQ
−1
y P⊥

A y. (14)

With P⊥
A the orthogonal projector:

ê = P⊥
A y (15)

where

Qy vc matrix of observables,
Qk vc matrix of observable group k,
σ2k variance factor for observable group k,
σ̂2k variance factor estimate for group k,
y vector of observables,
P⊥
A orthogonal projector,
ê vector of least squares residuals.

Application of the disjunctive group model to the
leveling and InSAR double-differences revealed an
overestimation of the precision of the InSAR double-
differences. Fig. 5 and 6 show an average standard
deviation of 0.4 mm for a single SAR phase observa-
tion (mm, vertical), which propagates into 0.8 mm
for an InSAR double-difference observation. From
Fig. 9 and 10 you can deduce that the InSAR double-
differences deviate more from the leveling double-
differences, even when taking a standard deviation
of leveling double-differences of 1 mm into account.
Therefore first the vc matrix has been split up in
a known leveling part and an unknown InSAR part.
In this step only two variance factors for respectively
ERS-2 and Envisat are estimated. Afterwards, a sin-
gle variance factor for the full model is estimated.
Applying these two steps results in the a-posteriori
vc matrix.

3.4. Functional model

Besides the stochastic model, the functional model
has to specified. In this section functional mod-
els to validate the InSAR double-differences with
the leveling measurements are described. Examples
are shown from models of condition and observation
equations and a combination of the two.

3.4.1. Model of condition equations

The model of condition equations [11] in its most
simplified form is based on the idea that the In-
SAR double-differences should be equal to the lev-
eling double-differences. It reads:

B∗E{y} =

[

−I I 0
−I 0 I

]





ddLev
∆t
∆cr

ϕ
E2
∆t
∆cr

ϕ
ES
∆t
∆cr



 = 0 (16)

P⊥
A = PQyB = QyB(B

∗QyB)
−1B∗ (17)

where

B condition equation designmatrix,
y vector of observables,
I identity matrix,

ddLev leveling double-difference observation,
ϕ InSAR double-difference observation,
∆cr spatial difference wrt. reference cr (cr − crref ),
∆t time difference wrt. master scene (tm − ts).

This model cannot be extended adding equations
conditioning that InSAR ERS-2 and Envisat double-
differences should be equal, as this would result in a
singular problem as the B matrix would not be of
full rank due to dependent columns.

3.4.2. Alternative hypothesis - mixed model

If the misclosures of the InSAR-leveling double-
differences indicate the presence of systematic
effects, the functional model was possibly too
idealized. To test the significance of the misclosures,
alternative hypotheses have to be specified and
therefore it is necessary to define physical causes
which lead to the misclosures. An example of such
a physical cause is sagging of the corner reflector’s
blades in time. This results in a deviating offset
between the leveling and InSAR double differences,
independent of the SAR sensor. Looking at Fig. 10,
this effect is possibly present in the time series of
corner reflector 5.

A way to test the presence of the sagging effect, is to
set up a mixed model in which sagging parameters
can be estimated. For linear sagging, this model
reads:



B∗E{y} = Ax (18)

[

−I I 0
−I 0 I

]





ddLev
∆t
∆cr

ϕ
E2
∆t
∆cr

ϕ
ES
∆t
∆cr



 = [BT ] [sag∆cr] (19)

where

A observation equation designmatrix,
x vector of unknown parameters,
BT diagonal matrix of temporal baselines,

sag∆cr sagging velocity relative to reference cr.

The vector of linear sagging parameters in mm/day
per corner reflector is represented by sag. The sig-
nificance of the estimated sagging parameters can be
evaluated using the v-teststatistic [12]:

v =
x̂

σx̂
reject H0 if v > kα (20)

where

x̂ unknown parameter estimate,
σx̂ standard deviation of unknown parameter,
kα critical value for level of significance α.

First tests for estimation of sagging parameters show
that they are around −0.02 mm/day for corner re-
flector 5. As their standard deviation is around 0.02
mm/day, they do not seem to be significant. The
fact that all observations are spatial differences rel-
ative to a reference corner reflector complicates the
interpretation of the estimated sagging parameters.

3.4.3. Model of observation equations

The model of observation equations is defined in [2].
The advantage of using this model, compared to the
simplified model of condition equations, is the split
up of the InSAR double-difference observable into
deformation and height components. In this way, ad-
ditional physical information is included in the func-
tional model, leading to a higher redundancy in this
case. The model reads:

E{y} = Ax (21)

E{









ϕ
E2
∆t
∆cr

ϕ
ES
∆t
∆cr

ddLev
∆t
∆cr

hgps









} =







k1E2 k2E2
k1ES k2ES
I 0
0 I







[

D
H

]

(22)

P⊥
A = I −A(A∗Q−1

y A)−1A∗Q−1
y (23)

where

ϕ InSAR double-difference (cycles),
ddLev leveling double-difference (mm, LOS),
hgps corner reflector GPS heights (mm),
k1 2λ−1,
k2 k1B⊥sin

−1R−1,
D double-difference deformation in LOS (mm),
H topographic height difference wrt. crref (mm).

As the InSAR observations are unwrapped to the
closest leveling observation, ambiguities should be
estimated for the match between ERS-2 and Envisat
double-differences. However, including estimation of
the ambiguities would significantly reduce the redun-
dancy and therefore result in less reliable estimates
of the three variance components. As only very few
double-differences would change when unwrapping to
the closest match between the two types of InSAR
double-differences, this has been left out for now.

3.4.4. Results from Variance Component
Estimation

VCE has been performed for the model of observa-
tion equations according to [2]. First two variance
factors for ERS-2 and Envisat have been estimated,
subsequently one variance factor for the entire model.
The results are shown in Fig. 11. The mean double-
difference standard deviation is 4.4 mm for Envisat
and 5.4 mm for ERS-2. Applying the propagation
law for point scatterers backwards this would lead
to standard deviations of 3.1 mm and 3.9 mm for
respectively Envisat and ERS-2 single InSAR phase
measurements (mm along the vertical).
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Figure 11. Model of observation equations: esti-
mated double-difference standard deviation for Lev-
eling, ERS-2 and Envisat.

The corner reflector phase variances based on SCR



are overestimated. It would therefore be recom-
mendable to use the SCR based on maximum clut-
ter for estimating the a-priori phase variances. The
a-posteriori standard deviation for ERS-2 is higher
than for Envisat. This may be caused by the large
Doppler shifts for ERS-2, although there is no con-
clusive evidence for that. Further investigation of
the adjustment residuals may reveal systematic ef-
fects which are not modeled in the functional model.
In this case, alternative hypotheses have to be spec-
ified and tested. The a-posteriori leveling double-
difference standard deviation is around 1 mm.

4. CONCLUSIONS

SCR estimates in SAR images can be used to obtain
a-priori phase variances for point scatterers like the
corner reflectors. Only for point scatterers with a
phase standard deviation lower than 0.25 rad, phase
residuals can be assumed normally distributed and
the SCR phase variance estimate unbiased. The
SCR’s for the five corner reflectors have both been
estimated using minimum and maximum clutter.
In case of maximum clutter, the estimated phase
variance for the corner reflectors is around 0.4 mm,
both for ERS-2 and Envisat. As they appear to
be time independent, one SCR estimate per corner
reflector should be sufficient to serve as a-priori
phase variance in the full time series. However, this
time dependency is likely to be influenced by the
SCR and the type of surroundings.

Leveling measurements have been introduced as an
independent technique with well-known observation
statistics, to validate the InSAR phase statistics.
As in case of InSAR the first information-bearing
variates are the double-differences, this type of
observation is used for comparison. The InSAR-
leveling double-difference comparison shows larger
deviations for ERS-2 than for Envisat. The cause
of this may be found in the processing chain, as the
correction for subpixel position within the resolution
cell of the corner reflectors needs to be improved
for large Doppler shifts and baselines. For corner
reflector 5, a deviating behavior for both ERS-2
and Envisat from the leveling double-differences
is visible. This may suggest physical causes, like
sagging of the blades.

A-posteriori variance factors for both ERS-2 and En-
visat double-differences have been estimated using
Variance Component Estimation in the Delft adjust-
ment and testing theory. The results shows an over-
estimation of the a-priori SCR phase variance. It is
therefore to be recommended to use maximum clut-
ter for the SCR estimates. The estimated InSAR
phase standard deviations are 3.1 mm for Envisat
and 3.9 mm for ERS-2 (mm, vertical). This is higher

than to be expected for a point target like a corner
reflector.
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