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ABSTRACT

Although PS-InSAR [1] deformation measurements may be very precise in terms of dispersion, this does not
automatically imply a reliable estimation of the signal of interest. It is necessary to determine the idealization
precision for deformation modeling: how well do the Persistent Scatterer (PS) measurements represent the
displacements caused by the signal of interest?
In the context of separation of displacements due to a superposition of deformation regimes [2], this research
focuses on the Subsidence Residual modeling (SuRe) concept. SuRe uses an integral geodetic mathematical
model, with the differences between measurements and subsidence prognosis as observations. The residuals due
to benchmark setting and deviations from the subsidence prognosis are modeled stochastically. The stochastic
model parameters are estimated through Variance Component Estimation (VCE) [3]. Using geodetic adjustment
and testing techniques combined with VCE, displacements due to benchmark setting and spatially correlated
subsidence can be separated.
This study investigates VCE for estimating stochastic model parameters in case of a superposition of deformation
regimes, based on simulated residual observations. Furthermore the SuRe concept has been applied in a test
area using both real leveling and PS-InSAR data. The results show that subsidence caused by a contaminated
deformation regime can be estimated precisely, but that awareness of the idealization precision of the deformation
measurements is important for reliable results.

1 IDEALIZATION PRECISION FOR DEFORMATION MODELING

The availability of precise geodetic measurements from techniques such as PS-InSAR and leveling is not neces-
sarily sufficient for a precise and reliable estimation of the deformation signal of interest. One needs to know
the physical relation between measurement and foundation layer(s), combined with the possible presence and
magnitude of other deformation phenomena: gas, salt or water extraction, polder drainage, natural compaction,
isostacy or tectonic effects. In other words, knowledge about the idealization precision for deformation modeling
is required: how well do the measurements represent the displacements caused by the signal of interest?
In classical geodesy, the idealization precision gives an indication of the identification precision of a point in the
terrain. Points with a high idealization precision, like the corner of a house, can be sharply identified. Points
like the middle of a canal have a worse idealization precision. This idealization precision is taken into account
in the stochastic model, to enable a correct estimation of the point coordinates. The same concept is applica-
ble to deformation parameter estimation from geodetic measurements. For example: if the signal of interest,
subsidence due to gas extraction, is contaminated by shallow subsurface deformation of a similar magnitude, it
has a low idealization precision. However, by (stochastically) modeling the idealization precision, it should still
be possible to reliably estimate gas extraction subsidence with a high precision.
Although idealization precision in deformation modeling plays a role in each geodetic measurement technique,
it is more prominent in PS-InSAR than in traditional techniques like leveling or GPS, due to the physical
properties of the measurement points. Leveling uses well defined benchmarks, which may have been established
in a building founded on a stable subsurface layer. In case of SAR reflections, the physical measurement point
can be less sharply identified. It may be even harder to determine to which foundation layer(s) they refer to
due to possible multi-bounce reflections. Furthermore, in urban areas where the PS density is usually high,
numerous spatial and temporal changes may be going on, leading to variations in surface burden and (delayed)
subsurface compaction.



In a previous study [2] it was shown that PS-InSAR deformation measurements can have a high local variability
which hampers the recognition of the signal of interest as it is contaminated by other spatio-temporal effects.
This superposition of different deformation regimes occurs frequently in areas with soft soils. Based on a cross-
validation technique using Ordinary Kriging, PS’s were selected that fitted the spatio-temporal properties of
the signal of interest. It is preferable however to use all deformation measurements to benefit from the highest
possible redundancy for parameter estimation. To enable this, the measured displacement should be split up
into components due to different deformation causes.

2 CHARACTERIZATION OF DEFORMATION REGIMES

2.1 Deformation regimes

A measured displacement may be decomposed into displacements caused by different deformation regimes, as
shown in Fig. 1. Displacements caused by different deformation regimes usually have different spatio-temporal
characteristics. Deformation regimes can be generally classified in the following way:

• structural instabilities (foundation, benchmark setting, pile friction),
• shallow mass displacements (groundwater level variations, polder drainage, natural compaction of shallow

layers),
• deep mass displacements (gas, oil and salt extraction, tectonics, isostacy).
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Figure 1: Example of a measured displacement decomposition due to different deformation causes: (a) founda-
tion, (b) compaction, (c) gas extraction.

2.2 Deformation regime parameters

The behavior of deformation regimes can be very complex. The number of parameters needed to characterize
them in a functional model may exceed the number of observations and lead to an unsolvable system. Another
more generic approach is modeling differences between measurements and the prognosed deformation stochas-
tically, based on the different spatio-temporal behavior of these residuals for different deformation regimes. For
each deformation regime, a covariance function has to be defined containing the stochastic model parameters
that describe the spatio-temporal behavior of the residuals. This covariance function is used to construct the
variance-covariance matrix (vcm) of the ’residual’ observations. An example of such a function for both tem-
porally and spatially correlated subsidence reads:

C{δzti, δz
u
j } =

1

2
σ2(|t|2p − |t− u|2p + |u|2p)e−(lij/L)2 (1)

where



C{δzti, δz
u
j } covariance between subsidence residual δz at point i on time t and δz at point j on time u,

σ2 variance,
p temporal power,
L spatial correlation length,
lij distance between point i and j.

This covariance function may lead to a semi-positive definite vcm, but when adding the positive definitive
vcm due to measurement noise to it, the total vcm will be positive definite. The spatio-temporal behavior of
the subsidence residuals are parametrized by σ2, L and p. Other deformation regimes with different stochastic
properties (spatial and temporal correlation length, isotropic or anisotropic) will have different stochastic model
parameters and different covariance functions.

2.3 Related techniques

Modeling deformation regimes stochastically using covariance functions to construct a vcm for the deformation
observations is strongly related to techniques like factorial kriging and principal component analysis [4]. In case
of factorial kriging, nested variograms are constructed to map each spatial component separately. The total
variogram is a superposition of variograms with different correlation lengths. To use factorial kriging, knowledge
of the different correlation lengths of the ’deformation regimes’ is necessary.
In Principal Component Analysis (PCA) the eigenvalues and eigenvectors of the vcm specify the magnitude and
direction of the stochastic processes covered by the vcm. A disadvantage of PCA is that physical interpretation
of the eigenvalues and eigenvectors is often not straightforward.
Recognition of the presence of time-correlated noise besides white noise in geodetic time series is described in
[5]. Two techniques to estimate the noise parameters are evaluated: spectral estimation and the so called ’M
estimates’. Spectral estimation has the disadvantage that regular sampling is required and estimates appeared
to be not very accurate. ’M estimates’ is a maximum likelihood technique, maximizing a probability function
by adjusting the magnitudes of the noise types.

3 ESTIMABILITY OF DEFORMATION REGIMES

3.1 Geodetic mathematical model

To estimate unknown parameters from observations including a quality description, the Delft adjustment and
testing theory [6; 7] constructs an integral mathematical model consisting of both a functional and a stochastic
part:

E{y} = Ax D{y} = Qy (2)

where

y stochastic vector of observations,
Qy variance-covariance matrix of observations,
A design matrix,
x vector of unknown parameters.

The functional model describes the relation between the observations and the unknown parameters; the stochas-
tic model consists of the vcm of the observations. The vcm may not only contain the measurement noise, but
also the noise due to different deformation regimes in the observed displacements. Observation errors and errors
in the functional model are traced by specifying alternative hypotheses and comparing their test statistics to a
critical value [7]. If the test statistic of the Overall Model Test is largest and not equal to its expectation value
of 1, a Variance Component Estimation (VCE) of the stochastic model is carried out. The stochastic model
parameters are estimated based on the adjustment residuals.



3.2 VCE: separation of benchmark setting and spatially correlated subsidence

Specifying point noise and model noise in the stochastic model has been applied in the Subsidence Modeling
(SuMo) concept developed in cooperation between Delft University of Technology and Nederlandse Aardolie
Maatschappij B.V. (NAM) [8]:

• point noise is the temporally correlated, but spatially uncorrelated displacement of measurement points.
This component is due to individual point characteristics, such as foundation pressure and pile friction,
whereas

• model noise is the temporally and spatially correlated difference between the prognosed and the actual
subsidence. This component is due to imperfections in the prognosed total subsidence, due to possibly
overlapping extractions of gas, water and salt, polder level changes and compaction, isostacy and tectonics.

The SuMo concept has been further developed to Subsidence Residual modeling (SuRe) by Adriaan Houtenbos,
using as observations the differences between measurements and the subsidence prognosis based on reservoir
information. The measurements are spatial height differences on a certain time. Note that due to the differ-
ential character of the measurements, a constant bias could exist that cannot be estimated. Because of this,
the estimated subsidence has a relative character. The bias can be calculated by tuning the results with the
subsidence prognosis outside SuRe.
The stochastic model covers the non-spatially correlated benchmark behavior and all other accumulated spa-
tially correlated subsidence due to both shallow and deep compaction. Qy, the vcm of the observations, is
constructed as a superposition of measurement, point and model noise, which are described by their own
covariance functions. As the measurements are spatial differences, Qy contains the noise due to differential
measurement precision, differential benchmark setting and differential deviations between the prognosis and the
actual subsidence.
An improvement in the SuRe concept is the Variance Component Estimation of the stochastic model param-
eters. To enable this, Qy is decomposed as a Taylor polynomial with the first derivatives of the vcm to the
stochastic model parameters, which are called the variance factors:

Qy = Q0
y +∆σ

2
obs(dQobs/dσ

2
obs) + ∆σ

2
stb(dQstb/dσ

2
stb) + ∆σ

2
mod(dQmod/dσ

2
mod)+

∆p(dQstb/dp) + ∆q(dQmod/dq) + ∆L(dQmod/dL) (3)

where

Qobs, Qstb, Qmod partial vcm’s covering measurement, point and model noise,
σ2
obs, σ

2
stb, σ

2
mod, p, q, L stochastic model parameters: measurement, point and model variance; temporal

power of point and model noise; spatial correlation length of model noise,
dQ cofactor matrix containing the derivative of Qy with respect to the noise parameter.

Note that the stochastic model parameters in the SuRe concept are not absolute factors, as the observations are
spatial differences. The model noise covers a spectrum of spatial wavelengths of superposed spatially correlated
deformation regimes. It has to be investigated to which extent their parameters can be estimated separately.
This is e.g. dependent on the precision of the estimated variance factors (correlation lengths).

3.3 Precision of VCE

Variance Component Estimation is based on the weighted sum of least-squares residuals, estimating the variance
factors according to the decomposition of the vcm to physical interpretable variance factors. The precision of
the variance factors is dependent on the redundancy in the mathematical model (in case of full rank: number
of observations minus number of unknowns) and the expectation value of the variance factor. One can see this
clearly in case of only one unknown variance factor for Qy. The estimator and the precision of the estimate
read [3]:

σ̂2 =
êTQ−1ê

m− n
; σ2

σ̂2 =
2σ4

m− n
(4)

where



σ̂2 variance factor estimator,
Q cofactor matrix of Qy = σ2Q,
ê vector of least-squares residuals,
m− n redundancy.

Besides the redundancy, the spatial and temporal sampling frequency of the measurements is important. Cor-
relation lengths lower than the distance between measurement points cannot be estimated.
The variance factor estimators are unbiased and have minimum variance in case the observations are normally
distributed [3]. Estimated variance factors are not necessarily positive. In case they are negative, the model
redundancy may not be sufficient or the decomposition of the vcm may not be adequate.
To verify the estimability of the variance factors, simulations have been carried out. In these simulations, ob-
servation noise has been generated based on the measurement noise and the noise due to the presence of one or
more deformation regimes. Therefore Qy was created using a superposition of covariance functions. Using the
Cholesky decomposition Qy = RTR, observation noise was generated as dy = RTn, with n a vector of standard
normally distributed variables.
The VCE simulations focus on the precision of the variance factor estimates. Actually, the vector of ’residual’
observations is not necessary to make a precision assessment of the variance factor estimates. The design matrix
and the decomposition of Qy into cofactor matrices are sufficient to do this. The ratio between the precision
and the estimated value of a variance factor determines its level of significance and subsequently the separability
of the deformation regime it describes. The varying elements in the simulations are:

• spatial and temporal sampling frequency (number of measurement points and epochs),
• measurement noise and number of deformation regime parameters.

As most of the cofactor matrices of the deformation regimes are full matrices, VCE requires a lot of pro-
cessing time. The simulations have therefore been restricted to small networks.
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Figure 2: Precision of the variance factor L̂ with expectation value 0.25 in case of (a) 4 (measurement and
model noise) and (b) 6 (measurement, point and model noise) variance factors to be estimated. The precision
is varying with number of measurement points, number of epochs and redundancy.

If the number of variance factors to be estimated increases while the network redundancy stays the same, the
precision of the estimated variance factors decreases, as can be deduced from comparing Fig. 2a to Fig. 2b.
The higher the spatial and temporal sampling frequency, the higher the redundancy and the higher the level of
significance of the variance factor estimates. For real world applications the match with the simulated pattern
has to be verified.
The variance factors can only be estimated if the VCE components are independent. If one of the cofactor
matrices can be constructed as a linear combination of the other cofactor matrices, the system of equations to
be solved will be singular. This occurs for example when two point noise deformation regimes are present with
the same temporal behavior, but with different variance. These cannot be separated.
Note that for the usage of VCE for deformation regimes, vcm derivatives are functions of more than one variance
factor if the covariance function of a deformation regime contains more than one parameter. For example: to
calculate dQmod/dσ

2
mod, the values for the variance factors q and L are needed as well. An iterative procedure

has therefore to be followed the find the optimal estimates for all variance factors. The impact of the iterative



procedure on the variance factor estimates and their precision has to be further studied.

4 SUBSIDENCE ESTIMATION WITH PS-INSAR AND LEVELING

4.1 InSAR and leveling measurement type

Besides a different idealization precision for deformation modeling, PS-InSAR and leveling measurements are
information-wise not the same. A leveling measurement htij is a spatial height difference between points i and j

on time t. A PS-InSAR measurement dmt
i is a temporal interferometric difference between master time m and

slave time t, for a certain point i.
Because of different physical properties of the measurement points, benchmark versus reflection, it is unlikely
that both measurements can be compared directly. To use leveling and PS-InSAR measurements within an
integral model, the different deformation regimes present in both types of measurements have to be taken into
account, to allow for an unbiased estimation of the the signal of interest.
The first PS-InSAR observations that bear interpretable information are the double-differences dmt

ri between
master and slave time and spatially with respect to a reference point r [9]. They can be reformulated like
leveling type of observations, setting the spatial deformation in the master image to 0:

dmt
ri = dmri − dtri ; dmri = 0 → dmt

ri = −dtri (5)

4.2 Functional model and variance factor precision

To solve for the parameters of interest in an integral adjustment and testing procedure, the leveling and PS-
InSAR observations have to be combined in the same functional model. The functional relation between
observations and unknowns can be written as a model of observation equations or as a model of condition equa-
tions [6]. For the precision of the variance factors, the redundancy in the mathematical model is important.
For the PS-InSAR technique, the redundancy in both model formulations can be determined in the following
way. If the number of PS’s is equal to P , the number of independent spatial differences that can be formed is
(P − 1). With T epochs or acquisitions available, the number of observations will be (P − 1)(T ). The spatial
differences in the master image are set to 0 and their stochasticity is accounted for in Qy; they are entered as so
called pseudo-observations. The number of unknowns are the point heights at one deformation reference date.
As heights can never be deduced from height differences, the reference height of one point is held fixed, which
leads to (P − 1) number of unknowns. In case the design matrix is of full rank, the redundancy is equal to the
number of observations minus the number of unknowns: (P − 1)(T )− (P − 1) = (P − 1)(T − 1).
When using double-differences, conditions are formed stating the double-differences minus the prognosed defor-
mation should be equal to 0. Noise types related to the deformation regimes are accounted for in the stochastic
model. In this case the redundancy is equal to the number of conditions that can be formulated, so equal to
the number of independent double-differences that can be formed. Spatially (P − 1) independent differences
can be constructed, for each interferogram. From T SAR acquisitions (T − 1) independent interferograms can
be calculated, which leads to a redundancy of (P − 1)(T − 1).
As the redundancy in the model of observation equations is equal to the redundancy in the model of condition
equations, the variance factors can be determined with an equal precision.

4.3 Subsidence estimation of a deformation regime using InSAR and leveling

As a first indication of the applicability of the Subsidence Residual modeling concept, tracing erroneous observa-
tions and applying VCE, a test run has been carried out in a small area of approximately 100 km2, successively
with real leveling and PS-InSAR measurements. In case of PS-InSAR, the spatial and temporal sampling fre-
quency has been varied. PS-InSAR points have been selected randomly, as the goal is using all PS-InSAR
observations, independent of the present deformation regimes.
The precision of all PS-InSAR observations have been assumed to be uncorrelated, like the leveling measure-
ments. However it is likely that the measurement noise of PS-InSAR observations is spatially and temporally



correlated due to atmosphere and deformation estimation in the PS-InSAR processing and that it is also de-
pendent on the physical properties of the PS and its surroundings (Signal to Clutter Ratio). Furthermore, the
assumptions regarding linear or more complex temporal deformation patterns of the PS’s will influence the PS
displacement observations. This falls outside the scope of this study, but will be addressed in the future.
The SuRe approach with deformation regimes point noise and model noise has been applied to estimate spatially
correlated subsidence which may be due to gas extraction. Table 1 lists the estimated variance factors and their
precision for three test runs. Fig. 3 and 4 show respectively the estimated subsidence and its precision.

Type Leveling InSAR InSAR

Observations 716 1710 2082

Unknowns 244 172 348

σobs 0.83±0.03 1.38±0.03 1.44±0.04

σstb 0.70±0.05 0.73±0.05 0.81±0.04

σmod 0.93±0.13 0.99±0.13 0.72±0.09

L 1933±335 2048±277 1530±273

p 0.89±0.02 0.94±0.01 0.95±0.01

Table 1: Estimated variance factors and their precision.
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Figure 3: Subsidence estimation (mm) using (a) leveling, (b) PS-InSAR and (c) PS-InSAR with a higher spatial
density. PS-InSAR data has been processed by TRE/NPA for NAM. There is a constant bias in each estimation
due to the differential character of the observations.
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Figure 4: Precision subsidence estimation (1sd, mm) using (a) leveling, (b) PS-InSAR and (c) PS-InSAR with
a higher spatial density.

Table 1 shows a lower measurement precision for PS-InSAR than for leveling, while the point noise variance
is of an equal magnitude. Due to the high local variability of the PS-InSAR measurements one would expect
both a higher measurement and point noise variance for PS-InSAR. However, SuRe also performs a test of the
functional model, and PS’s with an abnormal velocity have been rejected. The model noise correlation length
decreases when the local variation in the estimated subsidence increases. This may be caused by a superposi-
tion of spatially correlated deformation regimes. The temporal power is around 1, which means a near linear
behavior of the subsidence displacement. For PS-InSAR this can as well be addressed to assumptions during
the PS processing.
From Fig. 3 and Fig. 4 it appears that also a contaminated signal of interest can be reliably estimated with a
high precision, when taking the displacement due to benchmark setting and subsidence prognosis imperfections
into account in the stochastic model, together with VCE and a sufficient spatial and temporal measurement
density. Leveling and PS-InSAR generally show the same subsidence pattern. This subsidence pattern is the
accumulated subsidence due to all spatially correlated deformation regimes. The subsidence estimation from
PS-InSAR shows more local variations, especially when the spatial density of measurement points increases.



This indicates that the residual subsidence component contains displacements due to unmodeled deformation
regimes. In future research, it will be investigated if both the functional part, in terms of the subsidence prog-
nosis, and the stochastic part, in terms of deformation regimes with different spatial correlation lengths, can be
improved for this test area.

5 CONCLUSIONS

Awareness of the idealization precision for deformation modeling is important for a reliable estimation of the
signal of interest. When using all available displacement measurements, they have to be decomposed into
contributions caused by the present deformation regimes. In this context, the Subsidence Residual modeling
concept has been introduced. SuRe uses the differences between measurements and prognosed deformation as
observations and makes a distinction between measurement, benchmark setting and prognosis imperfections in
the stochastic model. Stochastic model parameters are estimated using Variance Component Estimation. The
precision of the estimated stochastic model parameters, the variance factors, depends on the redundancy and
the spatio-temporal measurement density. The more variance factors to be estimated the worse the precision,
in case the redundancy stays the same. Applications of SuRe to both real leveling and PS-InSAR data in a
test area, shows that also a contaminated signal can be precisely estimated. However, the subsidence residuals
indicate the presence of unmodeled deformation regimes. Future research will focus on the superposition of
more spatially correlated deformation regimes and the validation of VCE.
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