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ABSTRACT

State-of-the-art phase unwrapping techniques for interferometric time series do not fully benefit from the spatio-temporal
correlations between the phase observations. Incorporation of these correlations in the unwrapping process may increase
the success rate of correct unwrapping. Here, the mathematical framework for 3D spatio-temporal phase unwrapping using
integer-least squares is presented. The technique is based on the 1D (temporal unwrapping) + 2D (spatial unwrapping)
approach, currently applied in most Persistent Scatterer Interferometry (PSI) algorithms. The stochastic structures as well
as the functional models are shown.

1 INTRODUCTION

With the growth of the data archives, interferometric radar applications for deformation monitoring shifted from single
interferogram to time series analysis. Examples of the latter are the Persistent Scatterer technique (PSI) [1, 2] and the
optimal subsets approaches, e.g., [3, 4, 5]. Within the PSI technique the deformation of isolated point scatterers with
stable phase behavior is estimated using a single master stack. On the other hand, the optimal subsets approaches use
multi-looked interferograms with favorable baseline characteristics, grouped in subsets, to extract the deformation signal.
Regardless the technique chosen, correct phase unwrapping remains the crucial step for a reliable analysis. So far, two
main strategies for the unwrapping of the time series can be distinguished: 1) 
�� 2D unwrapping using conventional
techniques, e.g., [3, 4], and 2) 1D+2D unwrapping, e.g., [2, 5]. Obviously, unwrapping in multiple steps is suboptimal, as
spatial and temporal correlations are not optimally taken into account. Here, the mathematical framework for an integrated
3D phase unwrapping algorithm is presented, based on the 1D+2D approach, which is discussed first.

2 1D+2D UNWRAPPING

Within the 1D+2D approach, the time series of individual resolution cells are first independently unwrapped in time,
followed by a spatial unwrapping step. To reduce the effect of atmospheric distortions in the temporal unwrapping step,
often the differential phases between two nearby resolution cells are analyzed. These differential phases are denoted
as double differences (DD), differences in time and space. The original interferometric phases are regarded as single
differences (SD).

2.1 Temporal unwrapping

Various temporal phase unwrapping techniques are proposed, each with their own optimization criterion and stochastic
characteristics. Examples are the ambiguity function [6, 1], integer bootstrapping, and integer least-squares [7, 8]. The
ambiguity function searches a discrete solution space for maximal temporal coherence, assuming a predefined functional
model under the null-hypothesis (e.g. linear deformation). Because no stochastic properties of the phases are considered,
the ambiguity function is a deterministic estimator. Using the integer bootstrapping technique, some of the correlation
between the observations is taken into account. This implies that the stochastic model, describing the stochastic properties
of the observations, needs to be known. An advantage of bootstrapping is that additional deformation parameters can
easily be added. However, with the extra parameters the strength of the mathematical model is further reduced. The same
holds for the integer least-squares (ILS) technique. However, here the full stochastic model is considered. For Gaussian
distributed data, ILS is shown to be equivalent to the Maximum Likelihood estimator [9]. Because of this property and
the large flexibility in deformation models that can be considered, the integer least-squares technique is applied here.

The basic concept of the integer least-squares technique is to acknowledge the fact that some parameters, in this case the



ambiguities, are integer valued. The ILS problem can be denoted by the extended Gauss-Markov model as���������
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matrices for the integer and real valued parameter vectors
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respectively, and
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is the covariance matrix. The

minimization problem Eq. (2) is solved in a three step procedure. First, the float solution is computed by neglecting the
integer property of the ambiguities. Hence, a standard least-squares adjustment is applied to obtain the estimates @� , @� and
the accompanying variance matrix A �CB" � B" B$� B$ B" � B$ED = (3)

Then, the ambiguities are resolved in a least-squares sense. To reduce the computation time, the ambiguities are ’decor-
related’ using the LAMBDA method (Least-squares AMBiguity Decorrelation Adjustment method)[7, 10]. The decorre-
lating transformation reads @F ��G�H @�I� ��BJ ��G�HK�CB" G�= (4)

The integer ambiguities are obtained by solving the minimization problem���L J�MON;P @F & F>Q H �*RTSBJ P @F & FUQ = (5)

Back-transformation yields the fixed ambiguities V� .

Once the ambiguities are estimated, the float solution of the parameters of interest @� is updated using the fixed ambiguities.
The fixed solution reads @��W " � @�X&'�*B$ B" � RYSB" P @��& V� Q =� V�Z� (6)�*[$ � �*B$ &(�*B$ B" ��RYSB" � B" B$ 
\�*B$ B" �*RYSB" � [" �*RYSB" � B" B$ � (7)

where � [" �^]J�MON P F &)� Q P F &(� Q H/_ P V�*� F>Q = (8)

Hence, the variance of the fixed solution is not only dependent on the variance of the float solution, but also on the chance
of success in the ambiguity resolution. This chance of success is denoted by the success rate

_ P V���`� Q . Because of
their discrete nature, the fixed ambiguities V� have a probability mass function (PMF) and the fixed solution a multi-modal
probability density function. Unfortunately, the success rate for the integer least-squares estimator can not be computed
in closed form. Therefore, simulations based on the mathematical model are required to estimate the success rate.

Stochastic model for PSI
The covariance matrix

�9�
for the double difference phase observations are derived from the original Single Look Complex

(SLC) observations a by error propagation. The SLC observations are denoted asa � A a;baTc D �ed agfb �	���ha�ib agfc �����jagic�kml �n� oC���qpsr:tu
\�qv5wyx;rX
\�qz|{~}?r��
(9)

where � ��� indicate the points, 
 is the number of SLCs (the master image is denoted by a zero),
� z|{~}?r

is the covariance
matrix due to residual (non-modeled) deformation,

� v5wyx;r
describes the variability of the atmosphere and

� psr5t
represents

the noise due to loss of coherence and, e.g., thermal noise. Examples of the structure are shown in Fig. 1A-D. The
covariance matrices are derived using a covariance function, where the one for deformation is a function of time and
distance and the atmospheric function is only dependent on distance. The power law behavior of atmospheric turbulence
[11, 12] is used to construct the function based on the Matérn class of covariance functions [13].
The covariance matrix of the interferograms (SD) is obtained by� � A � b� c D �2� a �n� ���
�4� o�� l �����`d?� +X� d�� i &�� i kmk � (10)



where
�

is the interferogram matrix,
�

the identity matrix,
�

a vector of ones, and � is the Kronecker product. The
structure is shown in Fig. 1E. Finally, the covariance matrix of the double differences is derived using the connection
matrix � �\� � � �n� � � � � � � l � � � dmd &���� k � � i k = (11)

See Fig. 1F for the resulting covariance matrix, which is used in the integer least-squares estimation.
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Figure 1: Structures of covariance matrices for a single arc. A) Non-modeled deformation
� z|{~}?r

(function of time and
distance), B) Atmosphere

��v5wyx;r
(function of distance), C) Coherence and e.g., thermal noise

�9psr:t
, D) SLC phase

� o
,

E) interferometric phase
� �

(single difference), and F) phase per arc
� � (double difference).

Functional model for PSI
The functional model for the DD time series (arc) has the form
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where
�

is the differential height,
�

are the differential deformation parameters,
�

the height-to-phase factors,
�

describes
a deformation model as function of time � and P = Q � denotes a pseudo-observable needed to solve for the rank deficiency of
the model. Note that variances for the pseudo-observables are added to the stochastic model, see Eq. (11).

2.2 Spatial unwrapping

Once all arcs are individually unwrapped in time, they are spatially unwrapped to obtain observations with respect to one
reference point. To enable the detection of errors in the temporal unwrapping (the success rate of correct integer resolution
may not necessarily be equal to one, depending on the strength of the functional model), the arcs are constructed such that
they form a redundant network. A redundant network can be obtained by Delaunay triangulation, but other options are
possible as well. Using hypothesis tests [14] in a similar way as for a conventional levelling network, unwrapping errors
can be detected and removed. Two types of errors can be distinguished: A) completely wrong estimates for an arc, that is,
the search for the optimal solution resulted in a local minimum, or B) only one or a few ambiguities of an arc are wrong,
e.g., due to a wrong deformation model, a large arc length or strong atmospheric effects in certain images. Type A errors
are more likely to occur when the number of available images is limited. Type A errors should be removed, type B errors
should, if possible, be corrected to keep the network as strong as possible. The testing of the temporal unwrapping results
can be based on a) the estimated model parameters [8] and b) the estimated ambiguities.

Testing on the estimated parameters
Having a redundant network, it is clear that the estimated parameters, e.g., height differences, should form closed loops.
This feature is used for the testing. It can be based on one or more parameters simultaneously Although this procedure is
straightforward, there are a couple of drawbacks. First, arcs with type B errors cannot be distinguished from type A errors
and will be removed from the network. Second, arcs with a different number of deformation parameters will result in
closing errors, which also leads to rejections. As a solution for the latter an admissible closing error can be set, although
this value is hard to determine and will result in the acceptance of type B errors. The assumption of a success rate of one
then no longer holds. To circumvent these problems, the testing can be based on the ambiguities.



Testing on the ambiguities
Testing on the ambiguities is possible on the condition that the constructed double difference phase observations are not
re-wrapped. This can be seen as follows. Assume an interferogram in which 3 points are selected (see Fig. 2). Each point
has an unwrapped interferometric phase � , composed by an unknown ambiguity

�
and an observed wrapped phase

�
.
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Figure 2: Triangle of interferometric phases,
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Figure 3: The effect of not re-wrapping double difference phase
observations for a single arc.

Constructing the double differences results in
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where

�
are the unwrapped DD phases. Note that

� S + 1��?&�� �;� 
 �����
. By definition, these unwrapped phases form a

closed loop. As the
�

are not re-wrapped, their sum is also zero. Consequently, the ambiguities

��

form a closed loop
as well, which can be used in the testing. Wrapping of the DD phases

�
will result in phase residues, and the closure of

the ambiguities no longer holds. Hence, re-wrapping of phases results in a loss of information for this application. This
in contradiction to branch-cut unwrapping methods, where the phase residues are the prime source of information. The
consequence of not re-wrapping the DD phases is illustrated in Fig. 3 for a single time series.

Testing based on the ambiguities has the advantage that type B unwrapping errors can be detected and corrected, thereby
preserving the strength of the network as much as possible. Moreover, the number of deformation parameters per arc does
not influence the testing. Hence, the drawbacks of testing based on the parameters are accounted for.

After the testing procedure, the success rate of correct ambiguity resolution is assumed to be one. This results in a variance
matrix of the fixed ambiguities Eq. (8) equal to zero, which causes that the last term of Eq. (7) vanishes. Hence, normal
statistics and error propagation can be applied, enabling for example the integration of PSI results with other geodetic
measurements.

3 3D UNWRAPPING

Although the 1D+2D unwrapping approach may lead to satisfying results, this is not guaranteed. When too many arcs
are rejected in the spatial unwrapping step, the redundancy vanishes and the reliability of the solution decreases. An
integrated 3D approach circumvents these problems. Instead of temporal unwrapping of single arcs, within the 3D un-
wrapping algorithm multiple arcs are unwrapped simultaneously, benefiting from the mutual correlations. The closure of
the ambiguities in case of not re-wrapped DD is used again in the estimation process. An example is derived for the small
network shown in Fig. 4.

Stochastic model
The stochastic model for the 3D situation is derived in a similar manner as for the 1D case. The covariance matrix of the
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Figure 4: Example of network for 3D phase unwrapping.
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and the covariance matrix for the double differences becomes
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Because of the correlations between the DD phase observations, the result of Eq. (15) is singular. An extra regularization
parameter, which results in an extra term on the main diagonal of

� � , solves this problem. Figure 5 shows the structures
of the covariance matrices involved.
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Figure 5: Structures of covariance matrices for a network of multiple arcs. A) Non-modeled deformation
�*z|{~}?r

(function
of time and distance), B) Atmosphere

� v wyx;r
(function of distance), C) Coherence and e.g., thermal noise

��psr5t
, D) SLC

phase
� o

, E) interferometric phase
� �

(single difference), and F) double difference phase
� � .

Functional model
The functional model for the integrated 3D phase unwrapping is

� �� � �
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A � � D = (16)

The matrix �
� is the connection matrix without the first column, which accounts for the required reference point in the
network (see Eq. (12) for the analogy with the single arc case).

Practical implementation
The more arcs are added to the network, the larger the 3D unwrapping problem becomes. Obviously, computational
restrictions limit the maximum network size. To overcome this problem, a hierarchic unwrapping sequence can be applied.
First, a global network is unwrapped with a limited number of points. Once unwrapped, these points are used to constrain



the unwrapping of other points, and so on. An alternative is a region growing algorithm, again using constrains. The
functional model with constraints on the ambiguities is
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Preliminary tests on simulated data show the effectiveness of this approach. However, computation time of ILS is a
limiting factor. Strong improvements in this perspective are obtained by using integer bootstrapping, although part of the
correlations are hereby neglected. The next step will be the full implementation of the algorithm and tests on real data.

4 CONCLUSIONS

Three-dimensional phase unwrapping using integer least-squares fully benefits from the mutual correlations between the
phase observations in time and space. The technique is based on the 1D+2D unwrapping approach currently used in
most PSI algorithms. Innovative here is the testing the spatial network based on the estimated ambiguities. This not
only enables the detection of unwrapping errors, but also the isolation and correction of single erroneous ambiguities.
The same constraints on the ambiguities are used in the 3D approach. Although tests on simulated data are satisfying,
applications on real data have to show the reliability of the technique.
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