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Abstract—Because the quality assessment of Persistent Scatter-
ers (PS) is dependent on the deformation model chosen, PS may
be falsely rejected due to model imperfections. To accept these
PS, more advanced deformation models should be used. Two
methods applying adaptive deformation models are proposed.
The first is based on a sequential scheme of alternative hypothesis
testing of extended deformation models within the integer least-
squares framework. The second uses a iterative scheme of global
deformation modeling based on previous PS results. Application
of the techniques to a salt mining area in The Netherlands
confirms the increase in the number of detected PS.

I. INTRODUCTION

Persistent Scatterer Interferometry (PSI) techniques are
powerful means to monitor deformation of the earth’s surface.
They rely on the identification of scatterers which remain
coherent over the time interval under consideration. This
identification is based on the assumption of ergodicity, either
temporal or spatial. Assuming temporal ergodicity implies that
the precision of a scatterer can be estimated by evaluating
its behavior in time. This requires an a-priori deformation
model. We refer to this model as the model under the null
hypothesis, and it is used to unwrap the data in time and obtain
a first estimation of the parameters of interest. Under the null
hypothesis, we adopt a model for linear deformation, assuring
maximum redundancy in the estimation problem.

Analysis of the residues (the deviations between the obser-
vations and the model) can identify both scattering noise (or
point noise) as well as model imperfections, and is used to es-
timate the coherence of the scatterer. As a consequence, large
residues due to model imperfections will result in type-I errors
(false rejections) and coherent scatterers will be discarded for
further analysis. In other words, Persistent Scatterers (PS) with
more complex displacement histories will not be detected.

In this contribution two strategies are presented to increase
the number of detected Persistent Scatterers using adaptive
deformation models. The first strategy is based on alternative
hypothesis testing during the PSI processing. A sequential
scheme is used to apply and test extended deformation models
per phase double difference, intending to find a model that
sufficiently fits to the data to avoid type-I errors. The method is
based on the integer least-squares technique, which allows the
addition of extra deformation parameters without an increase
of the computational burden. The adaption of the deformation
model is based on hypothesis testing.

The second strategy is based on an iterative scheme. After
finishing PSI processing under the null hypothesis, a global
deformation model is estimated from the PS results. The
model can be parametric (e.g., a subsidence bowl) or based
on interpolation (e.g., Kriging). Further refinement of the
deformation model used is obtained in an iterative scheme.

The strategies to increase the Persistent Scatterer density are
applied to a salt mining area near Veendam in the Netherlands
using ERS1/2 data. This area is mainly rural and therefore
the number of objects that can potentially act as Persistent
Scatterer is limited. The detection of as much Persistent
Scatterers as possible is therefore crucial to obtain a detailed
indication of the actual spatial deformation pattern.

II. INTEGER LEAST-SQUARES FOR PSI

The basic concept of the integer least-squares technique is
to use the knowledge that some parameters, in this case the
phase ambiguities, are integer valued. The problem can be
formulated with the mathematical model

E{y} = Aa+Bb, y ∈ R, a ∈ Z, b ∈ R;
D{y} = Qy, (1)

where E{.} is the expectation operator, D{.} the dispersion,
y the vector of observations, A and B are design matrices
for the integer and real valued parameter vectors a and b
respectively, and Qy is the covariance matrix. The system of
equations (1) is solved in a three step procedure. First, the
float solution is computed by neglecting the integer property of
the ambiguities. Then, the ambiguities are resolved in a least-
squares sense. To reduce the computation time, the ambiguities
are decorrelated using the LAMBDA method (Least-squares
AMBiguity Decorrelation Adjustment method) [1]. Finally, the
float solution of the parameters of interest is updated using the
fixed ambiguities.

The mathematical model (1) comprises of the functional
and the stochastic model. The functional model describes the
relation between the observations and the unknowns, whereas
the stochastic model represents the statistical properties of the
observations.

The functional model for a single master stack, where the
master is indicated by a zero and N slave acquisitions are



available, has the form
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where ψ are the phase observations, S is the atmospheric delay
of the master acquisition, H the height, Dp are deformation
parameters with p = 1 . . . P , λ is the radar wavelength,
β is the height-to-phase conversion factor, αp describes a
deformation model as function of temporal baseline t and
(.)∗ denotes a pseudo-observable needed to solve for the rank
deficiency of the system [2]. The rank deficiency is caused by
the fact that for each observed phase an ambiguity needs to be
estimated, together with the parameters of interest. As a result,
the number of unknowns exceeds the number of observations.
With the introduction of pseudo-observables, the mathematical
model is regularized.

The functional model (2) shows that in principle any
number of deformation parameters can be used to estimate
the deformation profile. However, with an increasing number
of deformation parameters, the redundancy in the model
decreases and thereby the stability of the estimation process.
Therefore, the number of deformation parameters should be
as low as possible, provided that the phase can still be
unwrapped correctly. Examples of deformation models are a
linear deformation rate, a higher order polynomial, a periodic
signal or a breakpoint model [3]. A breakpoint model can be
useful in case of a certain event during the analyzed time span,
such as the start of oil or gas subtraction, or an earthquake.
Obviously, different models can be combined or others can be
designed based on a-priori knowledge about the deformation
history in the area.

The second part of the mathematical model is the stochastic
model, represented by the covariance matrix

D{
[
ψ
y∗

]
} =

[
Qψ 0
0 Qy∗

]
, (3)

where y∗ represents the vector of pseudo-observations. The
covariance matrix of the phase observations Qψ is obtained
by variance component estimation (VCE) [4], [5]. The VCE
technique estimates the covariance matrix directly from the

data. Hence, the covariance matrix used in the estimation
process is not dependent on a-priori assumptions on the quality
of the data. After estimation and subtraction of certain signals,
e.g. the atmospheric delay, the VCE algorithm is applied again
to update the covariance matrix. The covariance matrix of the
pseudo-observations Qy∗ contains variances which bound the
solution space of the unknowns.

III. ADAPTIVE DEFORMATION MODELS METHOD I:
SEQUENTIAL HYPOTHESIS TESTING

The first method using adaptive deformation models is based
on sequential hypothesis testing. The algorithm is initialized
with the selection of a set of these models. Then, each phase
double difference between two potential PS is unwrapped in
time applying the sequential scheme of alternative hypothesis
testing until a deformation model fits to the data well enough.
A linear model is a good null hypothesis because of the
maximum redundancy in the estimation process. The testing
criterion for accepting a hypothesis is the a-posteriori variance
factor

σ̂2 =
eTQ−1

ψ e

r
, (4)

where e is the vector of residuals between the unwrapped
phase and the deformation model and r is the redundancy in
the functional model. A σ̂2 of 1.0 indicates that the covariance
matrix used in the estimation process correctly describes the
dispersion of the observations. Recall that this matrix was
obtained by VCE. A value of 2.0 means that the stochastic
model used is a factor two too optimistic (assuming that the
functional model is correct). Hence, the a-posteriori variance
factor scales the a-priori stochastic model for a specific double
difference.

Applying the sequential scheme of hypothesis testing, a
certain deformation model is accepted when σ̂2 is smaller than
1.0. Otherwise, the next model is tested until the complete
set of models is evaluated. For computational efficiency, the
sequential testing scheme is performed in batch, that is, a
certain model is applied for a set of double differences, after
which the next model is applied to a subset of these arcs
which did not pass the test. For each arc the lowest σ̂2 and
the corresponding model are stored. Then, even when the best
model for an arc is not fitting well enough, the arc is accepted
when the lowest σ̂2 is lower than a higher threshold, e.g. 3.0.
A spatial procedure using a network of the arcs will finally
test the correctness of the temporal unwrapping.

To reduce the computational burden, a PS distribution driven
approach can be applied [3]. Here, the sequential scheme is
directed by a prognosis of the PS density in a certain area
based on amplitude dispersion.

IV. RESULTS SEQUENTIAL HYPOTHESIS TESTING

The sequential hypothesis testing procedure is applied to a
single master stack of ERS1/2 images covering an area near
Veendam in the north part of The Netherlands. The area, which
is mainly rural, experiences subsidence due to salt extraction
(since 1995). The salt extraction results in a bowl shaped



Fig. 1. PSI result using a linear deformation model for a salt mining area
near Veendam, The Netherlands (white circle). The analysis is based on 63
ERS1/2 images acquired between May 1992 and January 2005.

deformation signal. A total of 63 images covering the period
from May 1992 to January 2005 are used. The results of
standard processing using a linear deformation model is shown
in Fig. 1. The contours of the subsidence bowl are visible in
the village. However, no PS are detected in the center of the
subsidence bowl. Yet, the occurrence of buildings and other
man-made features in the area suggest a potential for PS.

Fig. 2 shows the result after applying the sequential testing
scheme using a linear and a breakpoint model. The breakpoint
is defined a-priori at 22 May 1995, based on the start of the salt
extraction. With this model PS are detected in the center of the
subsidence region. To enable visualization, the figure shows
linear deformation rates estimated through the unwrapped time
series, even when the breakpoint model was used for the
unwrapping. The inset shows the actual displacement profile
of these PS. The additionally detected PS are of paramount
importance for the reliable estimation of the spatial deforma-
tion pattern due to salt extraction in Veendam. They make
the difference between applicability and non-applicability of
PSI in this case. Note however that the result using adaptive
deformation models contains more outliers, which could be
autonomous moving PS or falsely accepted PS (type-II errors).

V. ADAPTIVE DEFORMATION MODELS METHOD II:
ITERATIVE DEFORMATION MODELING

The second method is based on an iterative scheme of de-
formation modeling. After a standard PSI processing under the
null hypothesis, that is, applying a linear model, a deformation
model is estimated from the PS results. The modeled defor-
mation is then subtracted from the original interferometric
phase and the PSI processing is repeated (again using a linear
model). Because the deformation models are estimated per
epoch using the displacement time series, possible non-linear

Fig. 2. PSI result obtained by applying the sequential hypothesis testing
scheme using a linear and a breakpoint model. Linear deformation rates
estimated from the unwrapped time series are shown. The breakpoint was
set a-priori at 22 May 1995 based on the start of the salt extraction. The inset
shows the displacement profile in the center of the subsidence area.

deformation is modeled as well. As a result, points which
were previously rejected as a PS due to too large deviations
from the model may now be accepted. Hereby the density
of PS improves. Obviously, this procedure can be repeated
iteratively. Note that a similar procedure is often followed in
standard PSI processing to remove atmospheric delays and,
based on auxiliary data, heights.

The deformation modeling can either be parametric or based
on interpolation (e.g. Kriging). An example of a parametric
representation is an ellipsoidal subsidence bowl

Dmod = d exp(−1
2
(u2 + v2)), (5)

where

u =
((x− xc) sin(θ) + (y − yc) cos(θ))2

r21

v =
((x− xc) cos(θ) − (y − yc) sin(θ))2

r22
.

Here Dmod is the modeled deformation, d is a scaling factor, x
and y are the azimuth and range coordinates of the PS, xc and
yc are the center coordinates of the subsidence bowl, r1 and
r2 are the long and short axis and θ is the orientation of the
ellipsoid. To estimate the parameters of the non-linear function
in a least-squares sense, approximate values of the parameters
are required. In practice these approximate values need to be
known accurately to ensure convergence to a solution. In case
the subsidence phenomenon can be modeled by a circular
bowl, the parameterization (5) simplifies significantly.

An alternative for parametric modeling is an interpolated
deformation field, e.g. obtained by Kriging. Kriging uses a
spatial covariance function to predict a signal at locations
where the signal is unknown. The covariance function is



Fig. 3. PSI result using a linear deformation model for a salt mining area
near Veendam, The Netherlands (white circle). The analysis is based on 63
ERS1/2 images acquired between May 1992 and January 2005.

estimated per epoch from the data and does not require a-
priori information about the deformation field. This method is
therefore more flexible than the parametric representation and
widely applicable.

VI. RESULTS ITERATIVE DEFORMATION MODELING

The iterative deformation modeling method is applied to the
Veendam area using Kriging to model the deformation field.
The result of standard processing is shown in Fig. 3. These
results are used for the deformation modeling by Kriging.
Fig. 5 shows an example of the predicted deformation field
for a single epoch at the end of the time series (maximum
deformation). The deformations are predicted on locations
with relatively low amplitude dispersion. Even though no
PS were detected in the center of the subsidence region,
Fig 5 shows that the subsidence bowl could still be predicted.
The detected PS after one iteration of deformation modeling
is shown in Fig. 4. The number of detected PS increased
from 13074 to 14963, confirming the expected increase in PS
density. Moreover, the modeling enabled the detection of a PS
in the center of the subsidence region.

VII. CONCLUSIONS

Because the quality assessment of PS is dependent on
the deformation model chosen, PS are falsely rejected due
to model imperfections (type-I errors). To detect these PS,
adaptive deformation models should be used. Two methods
are proposed. Both the sequential hypothesis testing scheme
and the iterative deformation modeling approach show an
increased density of PS. Application of the iterative modeling
approach to a salt mining area in The Netherlands shows an
increase in the number of detected PS from 13074 to 14963.
Moreover, both methods enabled the detection of PS in the
center of the subsidence area, which were not detected using
standard processing.

Fig. 4. PSI result obtained the iterative deformation modeling method using
Kriging. Linear deformation rates estimated from the unwrapped time series
are shown.
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Fig. 5. Example of the predicted deformation field [mm] for a single epoch
at the end of the time series (maximum deformation). The deformations are
predicted on locations with relatively low amplitude dispersion.
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