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Abstract—Monitoring of landscapes or sea bottoms by means
of laser altimetry or multibeam results in huge amount of
data covering the same area in different epochs. Often stable
benchmarks are not available in the area covered. We propose
a geodetic/geostatistical method to analyze possible deformations
in such area out of time series of data. The method is used
for a deformation analysis of six consecutive years of laser data
covering a dune section on the south-west coast of the island of
Texel, the Netherlands.

I. INTRODUCTION

During the last decade Airborne Laser Altimetry has be-
come available as a tool to obtain topographic elevation data.
Due to its relatively low cost it is possible to perform repeated
laser surveys on for example annual basis. This enables mon-
itoring of dynamically deforming topographic features such
as dune areas or tidal inlets. Often stable benchmarks like
hard infrastructure doesn’t exist in such areas implying that
traditional ways of deformation analysis cannot be applied.

Every monitoring session produces a data set containing
points consisting of three coordinates, representing the planar
position and the altitude. During the years the (interpolated)
altitude may change at certain positions. Such changes may
have two possible causes.

1) Measurement and processing errors.
2) Actual surface deformation.

The main problem that we address is how to separate the
actual deformation from the errors. We develop models which
allow to draw conclusions such as ‘at position (x, y) the
altitude is changed by at least ∆−(z) and at most ∆+(z)
with probability p.’

In order to solve this problem we set up a procedure that
is easily implemented in a computer. During the setup we
identify several parameters that have influence on both the
conclusions and the quality of the conclusions. How these
parameters should be chosen to obtain optimal results is
subject of further research. Basically, we link up data from
distinct years in order to obtain a 4D spatio-temporal data
set. For every single position in the area we try to find
an appropriate test corresponding to a model describing the
change in altitude as a function of time. The testing is done by
increasing dimension: first we test for stability using a q = 1
test. If this test fails we continue with q = 2 tests.

The procedure is used for analyzing annual laser data from
1996 to 2001 covering a dune section on the south-west coast
of the island of Texel.

II. TIME SERIES ANALYSIS

Suppose we are given a series of data sets D(ti) represent-
ing the xyz coordinates of an area A at epochs t1, . . . , tm.
The following steps are performed in the deformation analysis
process: a) Matching, b) Subdivision and Interpolation, c)
Premodeling, d)Testing and (re)modeling, and e) Presentation
of conclusions.

A. Matching

Especially when analyzing irregular landscapes, like dunes,
matching of the data sets of the distinct epochs is important.
If the matching step is left out, one could conclude that the
topography of the landscape is changing, although in reality
just the method of obtaining the data sets might have changed
throughout the epochs.

As in [1], we distinguish two simple types of mismatches:
planar mismatches, that are shifts in the xy-coordinates of the
data sets, and altitude mismatches, shifts in the z-coordinate.
These two mismatches can be combined in profile matching.
In the following we assume that no reference data or stable
objects are available

Altitude mismatches can be overcome by computing the
average heights zi of the total area in the distinct epochs.
The quantity zi − z1 gives a possible correction value for the
altitude offset.

Position mismatches can be found by local matching of
landscape features. Divide the area in suited subareas and try
per subarea to derive line elements like altitude lines or lines
of maximal curvature. If one does that for every epoch, the
line elements can be matched again.

Profile matching gives a tool for checking the results of
applied positions- and/or altitude shifts. For fixed y-value,
say, the altitude is plotted as function of the x-coordinate in
the different epochs. The resulting profiles can be compared
by visual inspection or by means of their relative Hausdorff
distance, compare [2].



B. Subdivision and interpolation

In general, simultaneous processing of all data representing
the whole area in the distinct epochs will be almost impossible.
Moreover, data will probably be delivered per epoch, although
we want to compare data from distinct epochs covering the
same area. A third problem could be that data in distinct
epochs were interpolated to different grids or were not inter-
polated at all. Therefore we have to perform some subdivision
and interpolation steps.

A first approach is to divide the whole area into pairwise
non-intersecting squares of, say, 100m × 100m. Fix some
square S. From every epoch we select those data with positions
in and close to S for an interpolation to a regular grid within
S that is the same for every epoch. Here we have to choose
a grid distance and an interpolation method. As a result we
have altitude data available for every epoch for every position
in the regular grid.

As an alternative we could allow some gaps in the altitude
data for a certain epoch if not enough positions close to the
grid point in that epoch are known. Another adaption can
be made for the purpose of multi position modeling, where
we model and analyze the change in altitude at a group
of positions: here a moving window with certain overlap is
probably more desirable.

C. Premodeling

The premodeling step consists basically of the obtaining and
processing of geophysical and civil-technical information. It
can be very helpful to know on forehand what deformation
is to be expected in the observed area. One should think
about the parameters that can be used to model such expected
deformation and about the number of these parameters related
to the number of observations in both the temporal and
spatial domain. Sometimes it may be convenient to design a a
simplified model that still describes the expected deformation
in an accurate way.

III. GEOSTATISTICAL MODELING, SINGLE POSITION

The mathematical system that we will use to deduce
conclusions on type and amount of deformation is that of
geostatistics. This means that we will formulate a number
of models, of which we think that they might describe the
actual deformation. These models will be tested using the
available data while incorporating the uncertainties in the data.
In this section we will only discuss models that describe the
altitude at one position as function of time. More on testing
and adjustment theory can be found in [3], [4].

A. Adjusting and testing observations.

After the interpolation step we assume that for every po-
sition (x, y) that we consider, a height hti

(x, y) is given in
all epochs ti for i = 1, . . . m. We restrict ourselves to linear
models, that is, the observed variables, in our case the heights,
are a linear combination of the model parameters. Moreover,
we require that the number of model parameters, n, does not
exceed the number of observations, m. This means that we

can always describe such model by a rank n model matrix
A ∈ M(m,n), where M(m,n) denotes the family of m × n
matrices. Due to the stochastic nature of the data, there will
be an error in the observed variables that is modeled by a
covariance matrix Qh ∈ M(m,m). Summarized, we have

E{h} = Ax, D(h) = Qh.

where E denotes the expectation and D the dispersion.
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Fig. 1. Adjusting an observation vector.

Now Im(A) = {Ax : x ∈ R
n} defines a n-dimensional

subspace of R
m that in general will not contain the vector

of observed heights h. A sketch of the situation is given in
Figure 1. In order to fit the observation vector h in the model
it is projected on that point ĥ ∈ Im(A) that is most close to
h with respect to the weighted distance defined by Qh. As
ĥ ∈ Im(A) it can be written as ĥ = Ax̂ for some x ∈ R

n. It’s
not difficult to verify that

x̂ = (AT Q−1
h A)−1AT Q−1

h h

The weighted distance Tm−n between h and ĥ is called the test
statistic and is a measure for the adequacy of the used model:
if Tm−n is small, it is more likely that the model described
by A corresponds with the physical reality that makes the
heights change (or not). Tm−n can be computed in terms of
the adjustment vector ê = h − ĥ. That is,

Tm−n = êT Q−1
y ê

The null hypothesis assumes that the model as described by
A gives a good approximation of reality. This is tested by
comparing the test statistic to a critical value κα: if Tm−n ≤
κα the model is said to be accepted, otherwise it is rejected.
This critical value depends on a preset level of significance α
and on the number m−n of degrees of freedom in the model.
The test statistic Tm−n has a χ2(m − n, 0) distribution if the
null hypothesis is true. Now, the critical value is defined as
the solution for x of the equation

1 − cdf(χ2(m − n, 0), x) = α

where cdf is the continuous distribution function. The level of
insignificance α indicates the chance that the null hypothesis
is rejected although it is true. But if α is made too small, the
chance that the null hypothesis is accepted although it is false
becomes too big.



B. A q = 1 stability test

We discuss some tests now. Throughout the tests, q = m−n
indicates the number of parameters in the model corresponding
to the test. We start with the most simple test, the stability test
T (h), that tests whether the altitude at a given position (x, y)
has changed at all. It is a one parameter test, q = 1, as the
height h is the only parameter in the model.
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One could also interpret this test as an outlier test: if one
height observation differs a lot from the observations in the
other epochs, the test will fail.

C. A q = 2 constant velocity test

We can extend the q = 1 stability test to a q = 2 test by
adding a parameter v for the velocity. If we put v = 0 we
are back at the stability test. The q = 2 constant velocity test
T (v, h), tests whether the altitude at position (x, y) changes at
constant speed, by fitting a line through the (ti, hti

) points and
computing the weighted least-squares error. The parameter v
gives the slope of the line while h gives its offset provided
we assume that t1 = 0.
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D. A q = 2 instantaneous deformation test

We can also extend the q = 1 stability test to a q = 2
suppletion test. In this case we test whether a suppletion of
size s has been added or removed after epoch ti but before
epoch ti+1. So there are in fact m−1 distinct suppletion tests
T i(h, s), one for every i ∈ 1, . . . , m − 1. Note that we get
back the stability test in case s = 0.
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E. Other tests

It is of course not difficult to think of other q = 2 tests
or even tests with more parameters. One could extend for
example the T 2(h, s) test that tests for one single suppletion
after the second epoch to a test T 2,j(h, s, t) that tests for an
additional suppletion somewhere after the second epoch. In
fact any choice of A ∈ M(m,n) for n ≤ m defines a test.
This shows the importance of the premodeling step: test only
for expected deformations.

F. Testing by the number of parameters.

The way we propose to setup and test single position models
is illustrated in Figure 2. We start testing at q = 1. All
positions that pass the stability test are considered to have
constant height. The adjusted height from the test is stored.
We continue testing only with the positions that failed the test.
There are several q = 2 tests in the Figure 2. For every q = 2
test that we consider, we compute the test statistic. If a position
fails every q = 2 test, it continues with q = 3 tests. In the
other case the model which produces the lowest test statistic
is chosen as the appropriate model for position (x, y).

q = 1 T (h)

v = 0 s = 0
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q = 2 T (v, h) T 1(h, s), T 2(h, s), . . . , T m−1(h, s)
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q = 3 T 2,j(h, s, t)

Fig. 2. Testing procedure.

IV. GEOSTATISTICAL MODELING, MULTI POSITION

Until now we have only considered tests that test deforma-
tion at a single position. Spatial correlation of the deformation
can be taken into account by testing groups of nearby positions
simultaneously. By considering groups of positions, outliers
are better detected and deformation can be better classified
even if only a small number of epochs is available. Therefore
multi positions modeling will be one of our key interests in
future.

V. ANALYZING TEXEL DATA

A. On the data

We will apply some of the methods discussed above on a set
of airborne laser altimetry data covering an area in the south-
west of Texel, compare [5]. We have data sets of every year
between 1996 and 2001, which means that we have six epochs.
The quality of the data sets is very diverse. An extensive study
of the data is described in [1]. It should be noticed that the data
we have worked with are not the original laserdata: in some
years third party corrections or interpolations were already
made before data delivery. All data sets were manipulated by
the Survey Department of Rijkswaterstaat to obtain a good
matching with two footpaths for which reference data were
available.

B. Processing the Texel data

We consider a subarea of 500m × 700m. This subarea is
divided into 35 squares of 100m × 100m. Any such square S
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Fig. 3. Altitude at stable positions in meters.

is analyzed as follows. For every year all available position-
altitude data are selected in a 140m×140m square containing
S in the middle. These data are interpolated to a regular
2m grid covering S by means of the surface defined by the
Delaunay triangulation of the available position data. Now it is
possible to collect the altitudes in the distinct years belonging
to a single position in the grid. We assume that every point
altitude has a variance of 0.3m and that no covariance exists
between different years. This variance is supposed to be a
safe upper bound, compare [1]. As the level of significance
for all tests we have chosen α = 0.005 giving a critical value
of κα(q = 1) = 14.8603 and κα(q = 2) = 16.7496. The
processing is finished by going through the q = 1 and q = 2
tests in Figure 2. For the constant velocity test we silently
assume that the data are acquired at regular intervals, that is
that the period between two consecutive data acquisitions is
approximately 12 months.

C. On the results

For some positions no testing is possible due to lack of
data in some year. The adjusted altitudes for positions tested
stable are plotted in Figure 3. All other positions are shown
in Figure 4. Black positions didn’t test positive on any of the
q = 2 tests. The top of the first row of dunes seems to be
increasing as many positions pass the velocity test reporting a
positive velocity indicated by the bar at the bottom of Figure 3.
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Fig. 4. Detected deformation, or non stable positions.

In orange a suppletion on the beach between the acquisition of
the 2000 and 2001 data is indicated. Some more local changes
seem to have occurred at other moments.

VI. CONCLUSION

In this paper we have presented a framework for the defor-
mation analysis of time series of data covering areas without
stable benchmarks. Within this framework, many options are
still open: e.g. choices of parameters, models of deformation,
methods of interpolation and the number of positions to be
tested at once.
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