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ABSTRACT

This study describes a method for InSAR/PS-InSAR
processing using parallelization algorithms. The
InSAR/PS-InSAR processing chain is analyzed from
the aspect of the computational load, which results in
a specific parallelization model. The theoretical con-
cept for the porting of Delft Object-oriented Radar
Interferometric Software (Doris) into a parallel com-
putational environment is described. The features
of the presented parallelization model include effi-
cient interprocessor communications utilized by MPI
(Multi Passage Interface) and a “chained” data dis-
tribution capability. An example of the mapping
process is illustrated for the case of simple InSAR
processing.

Key words: InSAR, PS-InSAR, parallelization, Doris
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1. INTRODUCTION

Classical InSAR processing is known to be compu-
tationally laborious. Although many aspects of the
data processing chain are already well known, there
is a need for more efficient methods that provide re-
sults in lesser time. Especially the advent of radar
time-series analysis, [1], needed for precise pin-point
deformation measurements, is a driving force for im-
provements in processing technology, due to the very
large quantities of data and intermediate products.
Improvements in processing speed can be obtained
by a strict initial selection of potentially useful re-
flections, but this will also limit potential alternative
applications. A-posteriori implementation of small
corrections to the processing chain, as well as stor-
age of variance-covariance information requires keep-
ing as much information at hand as possible.

This paper discusses possible improvements in the

processing chain by means of a combined paralleliza-
tion and distribution algorithm. The processing
chain is analyzed from the aspect of the computa-
tional load. Consequently, the analysis resulted with
the specific parallelization model of the InSAR ap-
plication space.

The developed model effectively makes use of the in-
herently spatially localized nature of most processing
steps of the interferogram production algorithm to
formulate the division of labor, both spatially across
the input data and temporally along the pipeline of
algorithm tasks. This formulation can be used to
split the load among all available processing units, by
either using multiple threads of execution on a multi-
processor configuration, or by a message passing in-
terface technique (MPI), [2], to coordinate multiple
processes distributed across a cluster of computers.
Subsequently, the concept for the parallelization of
Doris (Delft Object-oriented Radar Interferometric
Software), [3], is developed and presented.

As a case study, the Matlab/Octave development
environment is used for the preliminary evaluation
of the performance of the presented parallelization
model.

The paper proceeds in Section 2 with a discussion
on the InSAR/PS-InSAR processing algorithms and
introduces the processing and performance cubes as
the mean for the performance evaluation of the pro-
duction chain within the single/multi-processor en-
vironment. Section 3 introduces the concept for the
parallelization of the Doris software together with
basics of implemented interprocessor communication
model (MPI - Message Passing Interface), [2], and
data distribution model. Section 4 discusses the re-
sults of numerical experiments performed using the
previously discussed model within the Matlab envi-
ronment. Finally, section 5 outlines the perspectives
of future work and presents the conclusions.
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2. PARALLELIZATION OF INSAR/PS-
INSAR PROCESSING ALGORITHM

2.1. Strategy for parallelization

In order to effectively parallelize the InSAR process-
ing algorithm, it is important to discuss all parame-
ters that influence the performance. The analysis of
the processing chain is performed in the form that
instead of a detailed analysis and evaluation of each
processing step, which would be beyond the scope of
the paper, the “similar” steps are identified, grouped
in processing layers, and evaluated.

The introduced criteria on similarity are established
by the order of the processing step within the pro-
cessing chain, data handling, complexity of the par-
ticularly implemented algorithm, used libraries, and
mathematical nature.

Figure 1. InSAR processing flowchart.

The reason behind this analysis is that almost each
production step, see Fig. 1, can be implemented in a
different manner with a different algorithm, which in
turn would result in varying processing times even on
the same hardware configuration. For example, re-
sampling of the slave image to the master grid can be
performed by using different algorithms, [5], where
each of the comparable results requires a different
computational time.

Additionally, and more importantly, the reasoning

for such a distinction of the processing chain is that
different computer languages are usually extremely
sensitive to different code structures, e.g., Matlab
code with many loops is significantly slower from
other longer but more structured codes. Conse-
quently, InSAR processing is identified in the struc-
ture of the processing layers, which represent the
group of processing steps. These steps would in any
combination of algorithm, programming language
and computer system result in relatively similar com-
putational times.

In this manner the algorithm performance is mea-
sured in terms of “time-to-solution”, and the pos-
sible trap of equating the steps performance in
“Gigaflops” or “Megaflops” is avoided. The algo-
rithm or implementation that delivers the highest
Giga/Megaflops rate for each processing step is not
necessarily the one which provides the fastest solu-
tion [4].

As an extreme example: one could use high-
megaflops dense-matrix methods to solve a problem
where sparse methods would work just as well. The
O(N3) dense methods deliver outstanding Megaflops
numbers due to the regular structure of the algo-
rithms and the considerable efforts that have gone
into designing optimized libraries. Sparse meth-
ods, on the other hand, deliver significantly fewer
Megaflops, but only require O(N 2) operations. The
sparse methods would obtain results more quickly,
but would report lower Megaflops rates.

2.2. InSAR/PS-InSAR processing chain:
the analysis

The analysis is performed using Delft Object-
oriented Interferometric Software (Doris), [3], chosen
because it is a fully functional interferometric pro-
cessing software in the public domain. Doris follows
the classic UNIX philosophy that each tool should
perform a single, well-defined function, and complex
functions should be built by connecting a series of
simple tools into a “pipeline.” In a nutshell, Doris
consists of series of programs (modules) that perform
different interferometric tasks. More details on Doris
are provided in [3].

It is important to note, ahead of a discussion on the
structure of the InSAR processing algorithm, that
the algorithm input in the performed analysis is Sin-
gle Look Complex (SLC) data. The pre-processing of
the raw data, both radar and orbit, is not evaluated
in this work.

2.2.1. Analysis

Following the constraints from the parallelization
strategy, the analysis in this section is presented from
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the computational load/time aspect. The starting
point is a realization of the processing summary from
Fig. 1. In the following list the main processing steps
are identified, without a detailed description. For a
more detail review of the processing chain the reader
is referred to [5] and more information on InSAR
processing using Doris software can be found in [3].

Note that for the PS-InSAR processing steps 4, 6, 7
and 8 are not required.

1. Data input: Single Look Complex and orbit
data.

2. Pre-processing: Oversampling of data, usually
by factor of two in range and azimuth direc-
tion, and amplitude calibration. The calibra-
tion module is are implemented as independent
functions and are not part of the standard ver-
sion of Doris. Note that oversampling in range
is implemented in Doris.

3. Coregistration and resampling: The determina-
tion of the coregistration polynomial that de-
scribes the transformation of the slave to mas-
ter image, which is subsequently used for the
resampling of slave image to the master grid.

4. Data filtering: Optional spectral filtering and
phase filtering. The spectral filtering in the
range and azimuth is performed to increase
signal-to-noise ratio. The phase filtering is per-
formed either with a simple pre-defined spatial
averaging kernel, user-defined 2D convolution
kernels, or with the Goldstein filter.

5. Products: Computation of the interferometric
products, i.e., a complex interferogram and co-
herence image.

6. Reference phase: Computation and subtraction
of the interferometric phase correction of a ref-
erence body, i.e., ellipsoid and external Digital
Elevation Model.

7. Phase unwrapping: The reconstruction of the
original phase from the “wrapped” phase rep-
resentation, These modules are implemented as
independent functions and are not part of the
standard distribution of Doris. The SNAPHU
phase unwrapping software is usually used [6].

8. Geocoding and D-InSAR: The conversion of the
unwrapped phase to height, and the (azimuth,
range) coordinates are geo-referenced products
are computed.

9. Persistent scatterer processing: selection, con-
struction of a network, deformation parameter
estimation, phase correction, unwrapping, cor-
rection for the atmosphere, interpolation, etc.
These modules are implemented as independent
functions and are not part of the standard ver-
sion of Doris.

From the algorithm study it can be concluded that
most processing steps of the interferogram produc-
tion are inherently local. A simple example of this
statement would be the processing of two different
crops of the same master/slave combination. As long
as the master grid in the coregistration step is fixed,
i.e., the same input master subset for different slave
subset, the resulted interferograms are comparable
with the interferogram achieved by the full scene pro-
cessing. The computational load is another impor-
tant aspect that has to be taken into account. Due
to the reasons given in the previous section, it is very
hard to make a general statement on this. However,
there is a strong correlation between the computa-
tional load and data distribution. As shown in the
previous example, the smaller the input data set, the
faster the computation of the end result is performed,
even though the processing steps defined in the task
pool remain the same.

Figure 2. Performance cube. Each point represents
an execution time that depends on the number of pro-
cessors, the number of iterations and the size of the
data set.

This concept can be visualized by a processing cube,
Fig. 2. Each point within the performance cube rep-
resents an execution time that depends on the num-
ber of steps in the task pool (i), the size of the in-
put data set (s) and on the number of processing
nodes (p). In other words, the execution time is pre-
sented as a function of (p, s, i), i.e., each parameter of
(p, s, i) triple has a direct influence on the execution
time. The distinct points (p, s, i) in the processing
cube can be used as a means for preliminary algo-
rithm evaluation of the processing chain.

In order to visualize the performance, the cube can
be cut perpendicularly to each axis. This results in
three plots, each illustrated by a gray plane in Fig. 2.
Subsequently, each of these plots can be drawn two-
dimensionally, treating the second axis as a param-
eter, Eq. (1). The resulting graphs would illustrate
the following equation set:
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T = fi=const(s/p),

T = fs=const(i/p),

T = fp=const(i · s)

(1)

The main focus of this preliminary parallelization
study of Doris software is to answer the following
questions.

• How to successfully decompose and distribute
the input data over the processing nodes?

• How to manage the processes defined in the task
pool on the distributed data?

• How to successfully utilize the multiprocessor
environment into the processing chain?

Figure 3 illustrates the method used for paral-
lelizing the processing algorithm. Data decompo-
sition is combined according to the master/slave
(manger/worker) principle.

Figure 3. Parallelization strategy: Master-slave
method (left) combined with data decomposition
(right). The input data set is divided into equally
large, partially overlapping patches which are the pro-
cessed with minima interprocessor communication.

2.2.2. Data decomposition

This method was applied to divide the input im-
ages into smaller patches. The right part of Fig. 3
shows the partitioning scheme. The sub-images over-
lap each other, necessary because of possible effects
at the edges of the patches. To obtain satisfying re-
sults in conjunction with an acceptable amount of
overhead calculation, a preliminary “trial and error”
analysis shows that the overlapping region should be
about one-eighth of the patch size.

The decomposition influences, as expected, the algo-
rithmic behavior of all steps of the task pool. All the

algorithms became very suitable for parallelization,
except for the coregistration, where a special care is
required with the coarse coregistration offset.

For example, the impact of this decomposition on all
algorithms within a pool that uses FFTs would be
that the overall execution time of that particular step
is reduced to approximately O(n2), because the FFT
is applied to equally sized, small patches, regardless
of the total problem size. Normally, FFT has a time
complexity of O(n2 ∗ log(n)), as shown in [7].

2.2.3. Master / Slave method

This is a centralized approach, which is used to dis-
tribute the patches to all available processors. One
processor, the master (manager), does the I/O and
controls all other processors, i.e., the slaves (work-
ers). This scheme is illustrated in the left part of
Fig. 3. The master reads the whole data set, par-
titions it and sends sub-images to the slaves. The
slaves perform calculations and send back the data.
The server collects the results, post-processes them,
and stores the processed and fitted patches. Since
the master node performs no “real” computation,
it can control many slave nodes simultaneously. In
some special cases, the master node can act both as
a master and as a slave node.

3. IMPLEMENTATION OF THE PARAL-
LELIZATION CONCEPT

By optimizing and analyzing the sequential version
of the InSAR processing algorithm, as presented in
the previous section, the parallelization concept is
defined. This section deals with the practical appli-
cation of the concept, which is realized in the form of
a parallelization kernel. Figure 4 depicts the kernel
structure.

The kernel is fine-tuned for Doris software, and its
implementation is an ongoing project within DEOS.

1. Client manager: responsible for communi-
cation with the client. It provides functions
for reading commands and arguments from the
client and sending the results back to the client.
It is only used in the master server process.

2. Server (connection) manager: takes care
of communications between master/slave node
processes. It mainly controls broadcasting of
commands and arguments from the master pro-
cess to the slave processes, and collection of re-
sults and error codes. It also provides rank and
size information to the processes.
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Figure 4. Parallelization kernel.

3. Package (library functions) manager: re-
sponsible for maintaining a list of available li-
braries and functions provided by them. When
initiated by the master process, the package
manager will also perform the actual call to the
library functions.

4. Matrix manager: all the functions needed to
create, delete, and change the matrices on the
server processes. It maintains mapping from
client-side matrix identifiers to actual matrices
on the server. It is also responsible for perform-
ing “garbage” collection. The input data (com-
plex matrices) are partitioned in a way that vec-
tor over a set of MPI processes, so that each
process was responsible for a contiguous block
of data. The important feature of this style of
data partitioning is the minimization of the com-
munication between master/slave or slave/slave
nodes. The only data that need to be shared be-
tween processors is the end-points of every data
block.

This constellation of parallelization kernel offers
great advantages. First of all, debugging is made
easier because bugs are localized and thus are much
easier to identify. This approach also allows easier
extension of all the kernel modules. For example, as a
standard the basic server connection manager makes
use of MPI (Message Passing Interface) as the means
of communication between server processes. How-
ever, one could write a server connection manager
that uses PVM (Parallel Virtual Machine) instead.
As long as the new version implements all the pub-
lic functions in the class, no change is necessary in
any other part of the core code. Similar extensions
can be made to client connection, see Section 4, or
matrix manager as well, with for example a different
method of distributing the data.

Since the presented parallelization model strongly

depends on the MPI technique the following section
gives a brief introduction to it, in regard to this par-
ticular application.

3.1. Message Passing Interface (MPI)

In parallel computing the Message Passing Interface
(MPI) is the de-facto standard for implementing pro-
grams on multiple processors. MPI defines C, For-
tran and in the latest version C++ language func-
tions for executing point-to-point communication in
a parallel program. MPI has proved to be an effec-
tive model for implementing parallel programs and is
used by many of the world’s most demanding appli-
cations (weather modeling, weapons simulation, air-
craft design, etc.) [2].

In the message passing model, a process is executed
on each node of the system. Operations are per-
formed primarily on data local to its node, i.e., stored
within its memory. Therefore partitioning or de-
composition of the data, so that individual compu-
tational objects are assigned to individual proces-
sors, has to be performed as well. This decomposi-
tion can be either static, i.e., fixed, or dynamic, i.e.,
changing in response to its running process. Please
note that, in the discussed parallelization kernel, the
case of static data decomposition model is used. Fre-
quently, for the node process to continue, data from
other parts of the processing system are required. In
that case messages are transmitted containing the re-
quired information. Both data passing and synchro-
nization among concurrent processes is accomplished
in this manner. Information is not shared between
processes or processors except by explicit interaction
through messages.

Several message passing interfaces for concurrent
programs have been developed. Parallel Virtual Ma-
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chine (PVM) and MPI are the most widely ones.
MPI is the product of a broad effort to provide
a standardized programming interface and derived
much from the earlier PVM. The basic set of func-
tions incorporated by MPI provide an unprecedented
degree of portability across platforms. Although it
contains over one hundred functions, MPI programs
can be written using only six basic primitives. A case
study presented in the following section is based on
the MPI realization in Matlab with only 7 basic func-
tions.

4. A CASE STUDY

The purpose of this section is to illustrate the ideas
behind the analysis and design implementation and
tuning a parallel program using MPI. There is ob-
viously no way to survey all possible approaches to
the design and implementation of parallel programs.
A simple but non-trivial interferometric problem has
been chosen, where it’s implementation on a partic-
ular node and in a parallel environment is explored.
The ideas behind these processes and, to some ex-
tent, the tools used are common in interferometric
processing problems.

For the evaluation purposes the subset of basic MPI
routines is implemented in Matlab. The basis for this
implementation is MatlabMPI, [8], and Matlab*P,
[9], implementations which are further developed for
this specific purpose. The toolbox-like set of Matlab-
MPI scripts allow a Matlab program, with a certain
modifications, to be run in a parallel computer en-
vironment. Hence, in this way, message passing rou-
tines are passed between Matlab processes. More
specifically, Matlab scripts are written in a fashion
similar to writing programs with a “compiled lan-
guage” using MPI. This approach has the advantage
of flexibility, i.e., theoretically it is enabled to build
and parallelize the system in Matlab, as they are
build in “compiled languages” with MPI. In this way
a parallelization model similar to the one presented
in Section 3 is achieved.

Precisely, this section compares the performance of
the presented parallelization model in a non-trivial
interferometric processing problem, i.e., the har-
monic interpolation (oversampling) of complex data,
using Matlab. For both, local and parallel FFT com-
putations a conventional high-performance publicly
available FFTW package is used, [10]. Note that in
Matlab the FFTW library is implemented after ver-
sion 6.5.

Even though mathematics behind the problem are
relatively simple, the implementation is rather com-
plex due to large interferometric data sets. The full
scene size is approximately 1.5 billion pixels, and
oversampling of such a scene by, for example a factor
of 4 (in both range and azimuth) results in 6 billion

Figure 5. Example of input data set for a case study.

pixels.

The performance is evaluated on the subsets of the
real data, like shown on Fig. 5. All computations are
performed via the parallelization kernel as shown in
Fig. 4. The kernel divides the complex matrix among
the processes, on which subsequently computations
are performed, and in the last step the paralleliza-
tion kernel gathers the results. The data buffering,
both splitting and gathering, is utilized through the
matrix manager, the package manager is responsible
for calls to the specific library, while the server man-
ager preforms i/o communication with nodes of the
cluster system. Note that in the Matlab implemen-
tation of the discussed parallelization concept the
client manager is omitted. In this implementation,
the client manager is Matlab itself. Slave nodes are
realized with the standard 100Mb network environ-
ment through Network File Sharing (NFS) and SSH
protocol.

It is not an easy task to evaluate precisely the im-
provements achieved on the parallelization. Natu-
rally, there is always a tendency to report near linear
“speedup” or near unity “parallel efficiency”, but as
shown in Section 2, it proves to be difficult to reach
such results.

The results of the case study are the following. The
full scene oversampling on the single-unit processing
environment took 1 unit of time. The simple cluster
system of 3 standard Linux based cluster stations,
without any system optimization, finished the task
in approximately 0.40 of time unit, which means the
end result is achieved 2.5 times faster. Similar results
are obtained in the processing of smaller data sets
and in different hardware configurations.

It can be concluded from this case study that compu-
tational time, even in the case of the relatively sim-
ple computer cluster configuration, is significantly
reduced. The model is proved to be effective, de-
spite some minor complications with implementa-
tion, e.g., data distribution and buffering over the
network. Additionally, the parallelization model is
not directly influenced by data manipulation which
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was intended.

5. CONCLUSIONS AND FUTURE WORK

The final goal is an end-to-end application for the
operational processing of radar remote sensing data.
Components of such a system should manage every
aspect of the production, including phases such as
the automatic update of intermediate products fol-
lowing a change, auditing of historical results and
the ability to trap exceptional conditions and redi-
rect the approach to overcome these conditions. The
finally developed software is currently implemented
on a Linux Beowulf cluster system.

Moreover, the method for distributing small image
pieces (patches) amongst slave nodes proved to be
a simple but powerful model for parallel radar im-
age processing. Accordingly, as the result of the case
study showed, this and similar implementations ap-
pear to be scalable on a wide range of processors
and computer languages. Since almost no commu-
nication between the slave nodes is necessary, the
parallel version can be executed on nearly any con-
figuration.

A further study and more advanced development in
algorithms profiling and analysis is still required to
enable a system to be presented for a generic purpose
in the most demanding user contexts.
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