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ABSTRACT

Traditional coregistration methods based on corre-
lation optimization, can, due to temporal decorrela-
tion, fail to produce satisfactory results. We propose
an alternative method for fine coregistration, which
determines the offset vectors by using a cluster of
points. The point clusters are realized by means
of the modified Harris point detector, and allow a
certain refinement in the correlation matching. The
first results on real images show that the method
alleviates the problem of coregistration of the low
coherence scenes with an additional computational
overhead.

1. INTRODUCTION

Coregistration is an essential step in the generation
of SAR interferograms. Although correlation-based
coregistration algorithms have been efficiently imple-
mented in conventional InSAR, in Persistent Scat-
terer (PS) interferometry, [1], such methods may
fail to produce satisfactory results. This is due
to the long time separation between acquisitions,
which results in a severe temporal decorrelation, [2],
and to the, sometimes very large, spatial baselines,
resulting in geometric decorrelation, [2]. Conven-
tional correlation-based methods may fail in such
“extreme” situations.

The coregistration aims to find an optimal transfor-
mational model between master and slave image [3].
Conventional techniques are usually based on the
cross-correlation of the squared image amplitudes.
The offset vectors, necessary to align the slave image
to the master, are computed with sub-pixel accuracy
for a number of locations in the master. Over the to-
tal image space, for a large number of windows (e.g.
500 windows of size 32×32 pixels or more), the offset
between master and slave is estimated by computing
the correlation of the magnitude images for shifts
at the sub-pixel level. Using these offsets, the two-

dimensional coregistration polynomial is computed
up to a certain degree.

In order to guarantee an appropriate accuracy under
extreme conditions, i.e., master and slave combina-
tions with the large temporal and/or perpendicular
baseline, the conventional methods are usually mod-
ified by enlarging the size of the correlation window,
repositioning the estimation windows, or lowering of
the correlation threshold. These modifications are
usually performed manually and on a case-to-case
basis.

This paper proposes an alternative algorithm for fine
InSAR coregistration, which determines the offset
vectors by using a cluster of points. Since it does
not require a DEM, as proposed by [4], it can be re-
garded as a modification of the conventional method
in terms of a better distribution of the correlation
windows. Moreover, the better window distribu-
tion allows certain improvements in the correlation
matching procedure.

Definition of a cluster of points is performed with
a modified Harris point detector, [5], which success-
fully identifies characteristic points of input image
features, i.e., control points. As shown in [6], the
intensity-based algorithms for (control) point selec-
tion can be successfully implemented in the InSAR
processing, guaranteeing a more homogeneous distri-
bution of the correlation windows. Since this distri-
bution directly influences the quality of the coregis-
tration model, it can be better controlled and fine-
tuned.

It is well known that nonlinear filters for edge or
point detection in image processing are designed for
images with additive noise,

y(x) = s(x) + e(x), (1)

where s(x) is the (uncorrupted) image signal at po-
sition x, y(x) is the stochastic observed signal, and
e(x) is the noise component. Since coherent illumi-
nation sources, such as a synthetic aperture radar,
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have predominantly multiplicative noise contribu-
tions (speckle noise),

y(x) = s(x) · e(x), (2)

where the noise is assumed to be stationary with ex-
pectation E{e(x)} = 1 and dispersionD{e(x)} = σ2,
most conventional filters are usually not as effec-
tive as for additive noise. Nevertheless, we perform
an empirical analysis to assess the feasibility of the
Harris point detector algorithm for radar data, espe-
cially for low coherence scenes. Note that the pro-
posed procedure is not intended to replace the con-
ventional correlation approach, but can be used as a
backup coregistration tool to be used if the conven-
tional method fails.

In Section 2 we define the intensity-based point de-
tector method as a measure for point selection within
SAR scene. In Section 3, a detailed analysis of the
modified Harris detector is presented from the per-
spective of InSAR processing. This analysis is incor-
porated into a coregistration algorithm to demon-
strate the improved results, presented in Section 4
and is followed by a discussion and conclusions in
Section 5.

2. INTENSITY BASED METHODS

In the analysis corners and edges are defined as fol-
lows.

• Corners (control points) of local features
(shapes) in a SAR image are characterized by lo-
cations where variations of intensity I(x, y) as a
function of pixel position are high in both range
(x) and azimuth (y) directions. In this case both
partial derivatives of I are large, see Fig. 1.

• Edges are locations in the SAR image where
the variation in intensity I(x, y), as a function
of pixel position, in a certain direction is high,
while in the corresponding orthogonal direction
is low. For an edge oriented along the range
axis, this partial derivative is large, while in the
azimuth direction it will be low, see Fig. 1.

Here we refer to upper defined corners as the control
points.

2.1. Intensity-Based Detector

The main idea behind the intensity-based point de-
tectors is the utilization of the auto-correlation func-
tion of the signal, see [7]. In other words, the
intensity-based detector measures the intensity dif-
ferences between a window and windows shifted in

Figure 1. Definitions: Control point (corner) and
edge.

several directions, i.e., four discrete shifts in direc-
tions parallel to the rows and columns of the image
are used. When the minimum of these four differ-
ences is greater than the threshold, a control point
is detected.

Intensity methods are based on a matrix related to
the auto-correlation function. This matrix N aver-
ages derivatives of the signal in the window w around
a point (x, y).

N(x, y) =
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(3)

where I(x, y) is the image function and (xk, yk) are
the points in the window around (x, y). This ma-
trix captures the structure of the neighborhood. If
it is of rank two—that is, both of its eigenvalues are
large—a control point is detected. A matrix of rank
one indicates an edge and a matrix of rank zero a
homogeneous region. The relation between this ma-
trix and the auto-correlation function is given in Ap-
pendix A.

2.2. The Harris detector

Harris [5] improved the intensity approach of [7] by
using directly the eigenvalues of the auto- correlation
matrix N. The use of discrete directions and shifts is
thus avoided. Instead of using a simple sum, a Gaus-
sian can optionally be used to weight the derivatives
inside the search window. In this way the control
points are detected if the auto-correlation matrix N
has two significant eigenvalues. It is important to
note that the repeatability and localization of con-
trol points are two conflicting criteria, i.e., smoothing
improves repeatability but degrades localization [8].
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The repeatability rate is a percentage of the total
observed points that are detected in both images.

3. ANALYSIS: THE HARRIS POINT DE-
TECTOR

In the following two subsections the application of
the Harris detector to InSAR is analyzed, first math-
ematically and the followed by experiments on real
SAR images.

3.1. Theoretical Analysis

As previously indicated, the Harris point detector
selects a point for which autocorrelation function
significantly drops in two perpendicular directions.
That way the control points can be optimally re-
trieved from SAR scenes. For the decision on the
selection of appropriate algorithm for control points
detection in SAR images we followed [9].

The intensity-based algorithms presented in [9] were
compared in regard to their performance by means of
the repeatability rate of the control points selected
in the master/slave combination. The tested algo-
rithms were (a) Harris corner detector, (b) Cottier
algorithm and (c) Horaud algorithm.

The analysis showed, that even though all the tested
algorithms have the same background idea, i.e., the
partial derivatives of the intensity, the Harris algo-
rithm produced the best results. Even in the case of
master/slave combinations, where a low coherence
interferogram is expected, the Harris model came
also with good results. Of course, a set of arbitrary
parameters has to be adapted for a successful InSAR
application, which is later on dealt with in this pa-
per. Due to arbitrariness of the Harris model, which
is represented through this set of parameters, the re-
vised Harris model is finally introduced and applied,
which has the same properties like the original one.
Therefore, the properties of the original Harris mea-
sure are reviewed in detail.

The mathematical description of the detector is de-
rived firstly, by computing locally averaged moment
matrix from the image gradients and then, by com-
bining the eigenvalues of the (sub-pixel) moment ma-
trix in computation of a corner “strength” whose
maximum values indicate the control points. The de-
tection of the control points is based on the derived
local structure tensorN, see Appendix A, which rep-
resents the local statistics of the first order deriva-
tives around a pixel (x, y):

H = G(σ)⊗N(x, y) = G(σ)⊗

(

I2
x IxIy

IyIx I2
y

)

(4)

where G(σ) is an optional Gaussian with standard
deviation σ and ⊗ is the convolution operator. The
first derivatives Ix and Iy are estimated by convolv-
ing the intensity value of the image I(x, y) with the
optional smoothing operator in order to reduce noise
and aliasing effects. Note that smoothing with the
Gaussian, or any other filtering, is not performed on
the input images, but on the images containing the
squared image derivatives.

The control points are pixels for which H has two
large eigenvalues. The so-called corner response
function (“cornerness”) R allows a direct control
point sub-pixel detection:

R = det(H)− α trace2(H), 0.04 ≤ α ≤ 0.06

det(H) = λ1λ2

trace(H) = λ1 + λ2

(5)

The pixel positions of the control points are found
at local maxima of R above the given threshold T
(T > 0). Note that in this case the threshold is on
the corner response and not on the intensity value,
though the relation between these two components
can be derived. The sub-pixel position may be gained
by fitting a quadratic approximation to R,

a+ bx+ cy +
1

2
dx2 + exy +

1

2
fy2 = R(x, y). (6)

Using the nine pixels around (x, y) this leads to 9
equations with 6 unknowns which can be trivially
solved by a least-squares algorithm, see for exam-
ple [10].

3.1.1. Eigenvalue Analysis

This subsection summarizes the basic properties of
the Harris detector which are realized from the eigen-
value analysis of the local structure matrix, see
Eq. (4). As previously indicated, the eigenvalues are
incorporated in Eq. (5), which serves as a measure
for the control point response.

From Fig. 2, which visualizes the “cornerness” equa-
tion, Eq. (5), the following conclusions on the prop-
erties of the Harris corner detector algorithm can be
drawn.

• Rotation invariance: The ellipse rotates but
its shape (i.e. eigenvalues) remains the same.
Hence, the “cornerness” function R is invariant
to rotation.

• Partial invariance to (affine) intensity change:

– Invariance to intensity shift I → I+b, since
only partial derivatives are used in the def-
inition of the local structure matrix;
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Figure 2. Intensity change in the control point selec-
tion window: eigenvalue analysis

– Invariance to intensity scale I → a · I.

• Non-invariance to image scale.

The implemented conditions for the control point se-
lection, using the Harris corner detector algorithm,
are listed from the properties of the local structure
matrix and “cornerness” function and depicted by
Fig. 3.

• R depends only on eigenvalues of H,

• R is large for a control point,

• R is negative with large magnitude for an edge,

• |R| is small for a flat region.

Figure 3. Classification of the control points using
eigenvalues of the local structure matrix H or the
“cornerness” function R.

3.2. Experimental analysis

This subsection reviews the practical implementa-
tion of the Harris detectors on SAR images. Even

though the practical application of the Harris detec-
tor to InSAR results in a modified detector model,
it is important to further elaborate on the parame-
ters of the Harris detector and cornerness function,
Eqs. (4) and (5).

The sub-pixel positions of control points are found
at local maxima of R above the given threshold T
(T > 0). For InSAR applications the following ar-
bitrary parameters give the best results, α = 0.06
(empirical constant) and for threshold the 25 to 35
times larger value of the maximum intensity inside
the cluster window, i.e., input patch. Note that in
this case, the threshold is on the corner response and
not on the intensity value. The presented values are
evaluated on their performance in the control points
selection within a test data set of SAR images.

Furthermore, the radar image data are generally
highly sensitive to any kind of data smoothing, which
makes it important to analyze the application of
Gaussian in Eq. (4). The smoothing operator is ap-
plied to avoid control points due to image noise, [5].
This is however not done on the input image but on
the image window containing the squared intensity
derivatives. Therefore, the influence of the Gaussian
operator with σ = 1.0 is experimentally evaluated.
The analysis showed that the influence lies within the
range of 0.05 to 0.1 pixels. That is, on the limit for
the coregistration accuracy of one-eight of the pixel,
[11]. Hence, it is recommended to avoid the Gaussian
smoothing. For coarse coregistration the influence of
smoothing can be disregarded.

3.2.1. The modified Harris point detector

Since the parameters α and σ are arbitrary, they can
be always fine tuned for the specific demands on the
control points. In order to avoid the arbitrariness of
the detector function, Eq. (5), which is represented
by the optional parameters, a different model for the
Harris corner measure is implemented in the “pro-
duction” version of the coregistration algorithm:

R =
I2
x · I

2
y − (IxIy)

2

I2
x + I2

y + eps
(7)

where eps is floating-point relative accuracy. As
shown by [12] the modified model possesses the same
properties as the original Harris measure. In this im-
plementation the strict definition of the α parameter
is avoided, and the lower threshold on the point re-
sponse can be omitted. A more detailed explanation
of the implementation is given in Section 4.
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3.2.2. Cluster and point detector window

Another important set of parameters which directly
influences the distribution and the number of con-
trol points is the size of the cluster and point detec-
tor window. The cluster window is the size of the
input image patch, while the control point search
window is a radius of the region considered in non-
maximal suppression, i.e., the distance between two
neighboring control points. Even though this set is
not parameterized within the cornerness equation,
see Eq. (7), the analysis showed that the size of the
cluster and control point search window has to be
considered and that there is a certain relationship
between these two parameters.

It is realized that for urban areas a large patch
of 1024 × 1024 for a cluster window is acceptable,
while for non-urban areas the input patch should be
smaller by factor 2 or 4. Furthermore, this influences
the size of the control point search window. If the
cluster window covers a non-urban area, the size of
the control point search window should not be more
then 5 pixels, in order to detect control points of
small features. In an urban area, the control point
search window of 10 pixels (or even more) is expected
to give good results. The following figures illustrate
the influence of the control point window size on their
selection and distribution.

Figure 4. Performance of the control points selection
window of the size of 5 pixels.

The comparison between the distribution of points
selected by simple thresholding the amplitude and
the modified Harris point detector is the final step
in the discussion of the implementation of the point
detection algorithm. The results, depicted by Figs. 6
and 7, confirm the significantly better performance of
the modified Harris algorithm in terms of the spatial
distribution of the control points. With this a more
homogeneous distribution of the correlation windows
is guaranteed, which results in a better quality of the
coregistration polynomial, [3].

Figure 5. Performance of the control points selection
window of the size of 10 pixels.

Figure 6. Spatial distribution of points selected with
the modified Harris point detector.

4. ALGORITHM IMPLEMENTATION

This section reviews the basic steps in the implemen-
tation of the modified Harris detector model within
the (fine) coregistration algorithm. As previously in-
dicated, the basic idea of the implementation is the
application of image features in the distribution of
the correlation windows over the scenes. The dis-
tribution is realized through the control points, the
characteristic points of the image features, which are
detected in both master and slave images. Conse-
quently, these feature points are used for the corre-
lation matching between master and slave. In other
words, the control points in both master and slave
are used to position the correlation windows. This
yields to the modification of the conventional correla-
tion matching step. The final result of the algorithm
is the offset vectors map which is used for the com-
putation of the coregistration polynomial.
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Figure 8. Flowchart of the control points selection algorithm.

Figure 7. Spatial distribution of points selected by
threshold on the amplitude.

4.1. Point Selection

The point selection algorithm flowchart is given in
Fig. 8, where each step is visualized with the out-
put (matrix) of that particular step. The follow-
ing bullet-list gives more information about the each
step. Note that for the sake of simplicity and clarity
of the images in Fig. 8 the input image is of 128×128
pixels.

• Step 1 (input): An input image, usually over-
sampled by the factor of 2 to avoid aliasing ef-
fect, and to improve the localization of the fea-
ture point selection.

• Step 2 (mapping): Compute the Harris cor-
nerness measure, Eq. (7), which transforms the
input image into the control point strength im-
age.

• Step 3a (radius): Extract local maxima of the
input image by performing a gray scale morpho-
logical dilation, see for example [14]. In other
words, this matrix is used for points selection
within a certain radius from each other.

• Step 3b (binary): Binary matrix of control
points within the input patch. Optionally, by
applying Eq. (6) the sub-pixel position of the
control points can be determined. The con-
trol point search window is a radius of the
region considered in non-maximal suppression,
i.e., the distance between two neighboring con-
trol points.

• Steps 4a and 4b (output): Control points are
located by finding points in the control point
strength image that match the dilated image
and are also greater than a certain threshold.
The input value for the threshold can be omit-
ted by setting the number of control points re-
quested from the input patch, e.g., the number
of points is 20.

4.2. Correlation Matching

In this step of the coregistration algorithm the off-
set vector map between the input images is gener-
ated. The offset map is computed from previously
detected control points in two input images, by look-
ing for points that are maximally correlated with
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each other within windows surrounding each point.
The points that correlate most strongly with each
other in “both” directions are returned as an out-
put. This is a simple N2 comparison.

Furthermore, only the control points within a cer-
tain disparity limit are compared over the two input
images. The disparity limit (max/min) can be set
by using an output of the coarse coregistration step.
In the absence of a priori information this maximum
search radius can be set to max-disparity pixels, i.e.,
the size of the patch.

In the course of the matching process there are of-
ten several candidate matches for each control point.
Initially, the one that is the most correlated in image
intensities at the control point locations is selected.
A normalized cross-correlation of image intensity is
used as the measure of the strength of the match.
The correlation is performed over two w × w pixel
patches centered on each control point, [13]. In this
implementation it is assumed that both input images
have a zero mean. Optionally, an image smoothed
with an averaging filter (see for example [14]) of size
w × w is subtracted from each of the input images,
Fig. 9. This filtering compensates for brightness dif-
ferences in each image and allows faster correlation
calculation.

Figure 9. Visualization of the average filter of size
w = 5 for the input image of Fig. 8.

The maximum strength matches are stored for each
control point from the first to second image in the
form of a correlation matrix, Fig. 10. The correla-
tion matrix holds the correlation strength of every
point relative to every other point. This is necessary
to find pairs of points that correlate maximally in
both directions. Matches are accepted into the ini-
tial set of offset vectors, if they exhibit a maximum
in both directions. This has the effect of removing
control points which are ambiguous in that they have
multiple candidate matching.

For the analysis of the correlation matrix, a maxi-
mum is found along rows (azimuth direction) that
gives the strongest match in the array of control
points of the slave image for each member of the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 10. Correlation matrix: For every feature
point in the first image a window of data is extracted
and correlated with a window corresponding to every
feature point in the other image.

array of control points of master image. Secondly,
the same procedure is performed along the columns
(range direction). The maximum value down the
columns give the strongest match in points array
of master for each point of the slave set. Finally,
matches which were consistent in both directions are
found and extracted from original arrays to form the
initial offset vector map, see Fig. 11

Figure 11. Initial set of offset vectors.

Finally, the initial set of offset vectors is tested for
outliers (e.g., data-snooping, [10]) to result with the
final offset map, Fig. 12, which is subsequently used
for the computation of the coregistration polynomial.

5. CONCLUSIONS

A methodology using unconventionally detected
point clusters for SAR image coregistration is devel-
oped, by using the modified Harris point detector.
This method is intended to be used as an alternative
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Figure 12. Final set of offset vectors.

for conventional, correlation-based, coregistration al-
gorithms in cases where correlation between the two
image scenes is extremely low, e.g., due to tempo-
ral decorrelation or baselines longer than the critical
baseline.

The main advantages of this method are: (a) a suc-
cessful application of the image features, (b) a direct
comparison between master and slave image, and (c)
coarse coregistration can be omitted. A potential
drawback of this approach could be a demanding
computation time. Also, more parameters are re-
quired for fine-tuning as well as a special care with
optional data filtering and smoothing is required.

The evaluation of the quality and performance of the
method is limited to a few case studies. In fact, it
is difficult to assess the performance, because on one
hand, both methods perform well in a “normal” sit-
uation case, but on the other hand, in “extreme”
cases, where the conventional method usually fails
to give reasonable results, there is no ground for a
comparison.

Nevertheless, it is anticipated that the method per-
forms in an “extreme” situation case at least as accu-
rate as the conventional. The reasoning behind this
is, that the refinement provided with the presented
coregistration model enables:

1. the correlation windows to be more “accurate”,
by the homogeneous point distribution and the
direct comparison between master and slave im-
age;

2. the points which would result with a low corre-
lation are used more efficiently in the offset es-
timation, by using the sub-pixel correlation ma-
trix

It is also important to stress that this model is de-
signed as an alternative and not as a replacement

tool for conventional coregistration methods.

APPENDIX A: DERIVATION OF THE
AUTO-CORRELATION MATRIX

The local auto-correlation function measures the lo-
cal changes of the signal. This measure is obtained
by correlating a patch with its neighboring patches,
that is with patches shifted by a small amount in
different directions. In the case of a control point,
the auto-correlation function is high for all shift di-
rections.

Given a shift (∆x,∆y) and a point (x, y), the auto-
correlation function is defined as:

f(x, y) =
∑

w

(I(xk, yk)−I(xk+∆x, yk+∆y))
2, (8)

where (xk, yk) are the points in the window w cen-
tered on (x, y) and I the image function.

To detect control points we have to integrate over all
shift directions. Integration over discrete shift direc-
tions can be avoided by using the auto-correlation
matrix. This matrix is derived using a first-order
approximation based on the Taylor expansion:

I(xk +∆x, yk +∆y)

≈ I(xk, yk) + (Ix(xk, yk)Iy(xk, yk))

(

∆x
∆y

)

(9)

Substituting the above approximation into Eq. (8),
we obtain:

f(x, y) =
∑

w

(

(Ix(xk, yk) Iy(xk, yk))

(

∆x
∆y

))2

= (∆x ∆y) ·
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w

(Ix(xk, yk))
2

∑

w

Ix(xk, yk)Iy(xk, yk)

∑

w

Ix(xk, yk)Iy(xk, yk)
∑

w

(Iy(xk, yk))
2









·

(

∆x
∆y

)

= (∆y ∆x)N(x, y)

(

∆x
∆y

)

,

(10)

which shows that the auto-correlation function can
be approximated by the matrix N(x, y), which cap-
tures the structure of the local neighborhood.
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