Recursive data processing and data volume
minimization for PS-InSAR

Petar S. Marinkovic, Freek van Leijen, Gini Ketelaar, Ramon F. Hanssen
Delft Institute of Earth Observation and Space Systems
Delft University of Technology
Kluyverweg 1, 2629HS, Delft, The Netherlands
Telephone: ++31 15 278 8143
Fax: ++31 15 278 3711
Email: p.s.marinkovic @Ir.tudelft.nl

Abstract—PS-InSAR has proven to be an accurate and ef-
ficient technique for the joint estimation of topographic and
displacement signal from stacked interferometric combinations.
In this contribution a new method for PS-Insert processing is
introduced, which enables the recursive estimation of parameters
of interest. The method is based on the ILSQ PS-InSAR concept
and makes use of the estimation vector and corresponding
variance-covariance matrix of the initial estimation epoch. The
presented methodology systematically adds a new acquisition (or
set of acquisitions) to the existing stack, updates the solution
of the previous run, and analyzes whether the behaviour of the
(pre-) selected points fits the expected one. This contribution
focuses on a mathematical framework, rather then on specific
applicational problems. Nevertheless, the performed numerical
analysis on simulated data sets is analyzed and discussed, which
shows that the preset aims of the recursive PS-InSAR estimation
technique is achieved.

I. INTRODUCTION

Time series InSAR analysis using persistent scatterer (PS)
techniques aims at the joint estimation of topographic and
displacement signal from a number of interferometric com-
binations, [1], [2]. Since the estimates of both parameters are
correlated and error signal due to, e.g., atmospheric signal
can significantly affect the adjustment, an accurate estimation
depends on the availability of a large data stack, i.e., more than
20-30 images. A smaller number of images usually results
in problems like detecting the potential PS, reducing the
atmospheric signal, separating topography and displacement,
and phase ambiguity estimation.

An additional problem for all current multi-image pro-
cessing concepts is that the parameter estimation is usually
performed in batches, i.e., by using all available acquisitions
at once. Hence, in order to incorporate a newly available
acquisition into the processing chain, and consequently update
the estimates, the whole processing (at least the PS part) has
to be performed again. Such an approach consequently leads
to an increase of processing time, limits the application to the
areas where only a sufficient number of images is available,
and reduces the potential application of the method to a semi-
real-time deformation monitoring.

The two main processing concepts of PS-InNSAR are the
concept of the ambiguity function, [1], and Integer Least
Squares (ILSQ) method, [2]. The main drawback of the first

one is that the propagation concept of observations to the
unknown parameters is suboptimal. Moreover, the method
strongly depends on the discretization of the solution space
and it treats unknown ambiguities as deterministic parameters
instead of stochastic ones. The ILSQ approach is based on the
principles of Best Linear Unbiased Estimation (BLUE) — it is
based on the minimization of the mean squared error and it
is formulated as a constrained minimization problem on the
integer nature of the unknowns, [6]. By means of the ILSQ
method, the quality description of estimated parameters is the
one of the end products of the analysis, which can conse-
quently be used to determine the significance and reliability
of the estimated parameters.

The ILSQ PS-InSAR processing framework sets the basis
for a recursive data processing strategy, where new acquisi-
tions can be easily added to an existing data stack, significantly
reducing the computational requirements. This implies that the
presented methodology systematically adds a new acquisition
to the existing stack, updates the solution of the previous run,
and analyzes whether the behaviour of the (pre-)selected points
fits to the expected behaviour of parameters of interest. If not,
an alternative hypothesis is tested against the prior solution,
leading to the rejection of the point, adaptation of the model,
or manual intervention.

For the conditions on the practical application of recursive
PS-InSAR processing, it can be referred to the block—diagonal
structure of the variance-covariance matrix of the introduced
recursive model (the estimates from the initialization run and
phase observations of the additional acquisition are assumed to
be uncorrelated). Secondly, the atmospheric and non—modelled
displacement contributions to the interferometric phase have
to be modelled and incorporated into the variance matrix by
means of covariance functions, [4], [5] — in the presented
study the covariance functions are not further elaborated on.
Moreover, in numerical experiments, phase contributions are
isolated by low—pass filtering in the spatial domain and high—
pass filtering in the temporal domain. Furtheron, in order to
correctly perform the initialization run (candidate selection and
unwrapping), a sufficient number of images (15-20) is needed.

In the following sections the concept of the recursive PS-
InSAR is presented. Examples on simulated data are used
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to illustrate intermediate and final products and validate the
concept.

II. RECURSIVE ILSQ PS-INSAR: ANALYSIS

A. ILSQ for PS-InSAR

The general mathematical model for PS-InSAR in Gauss-
Markov formulation has the following form:
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where: y. stands for double-difference phase observations, Yy
for pseudo observations, A, and B o are design matrices,
a ambiguities (a € Z), and b unknown parameters of interest
(b € R). In order to simplify notation A; » are denoted as A
and B > as B. Note that in the formulated model, the pseudo-
observables are required to solve the model rank-deficiency.

The BLUE of = of a constrained linear model, Eq. (1), is
obtained in two steps. First, the BLUE estimate of x is ob-
tained from the unconstrained linear model E{y} = [A, Bz,
resulting with a float solution Z = [a, B]T and corresponding
variance matrix ;. This result is then input for the second
step, where the BLUE of x for constrained model is obtained
as the BLUE of F{z} giving a fixed solution of the unknowns.
Hence, the unknowns of the constrained model are determined
by, [3]:
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with corresponding variance matrix:
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In a practical application of ILSQ to PS-InSAR the up-
per described procedure is solved by means of a three-step
procedure, where an extra step is introduced to resolve the
ambiguities. This addition is related to an optimization of
the ambiguity search spaces and it is realized through the
Least-squares AMBiguity Decorrelation Adjustment method
(LAMBDA) algorithm, [2], [3]. This optimization results in
a fixed solution for the ambiguities a. The fixed ambiguities
are consequently used to obtain the solution of the vector of
unknown parameters b, by means of Eqs. (2) and (3)

For more details on the stochastic part of the observation
model, Eq. (1), reader is referred to the concepts presented in
[5] and [4].

B. Recursive ILSQ PS-InSAR

The presented mathematical ILSQ for PS-InSAR framework
serves as a basis for recursive PS-InSAR processing. The
goal of recursive PS-InSAR is to estimate the parameters of
interest recursively from the observed data — double difference
interferometric phase observations. The starting point in the
analysis is a partitioned model, formed of the solution of the
estimates from previous epochs and observation equations of

new observations:
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where parameters related to epoch ¢ prior to new epoch k
are ;) = (i, Bi‘k}T representing estimates of displacement
parameters and residual height w.r.t. the reference surface
(ellipsoid or a-priori DEM), with corresponding variance-
covariance matrix Q;, . Parameters related to the new mea-
surement are the ambiguity of the phase observation, ay, which
is again resolved by means LAMBDA method. f; and f3,.,,
stand for temporal baseline and height-to-phase conversion
factor, [4]; while o, stands for standard deviation of the new
phase measurement, [5].

The mathematical proof of the equality of batch and re-
cursive estimation is given in the Appendix. The appendix
equation set shows that there is no need to store the previous
observables Y.t =1, ,k—1 (e.g. k— 1 interferograms
and PS phase history), for the purpose of computing the
present least-squares estimator &y ;. That is, the estimator
Zy,, can be computed directly from the previous estimator
Z;)5,» its corresponding variance matrix ®z,,,» and the present
observable ;. This is the essence of recursive estimation.
Therefore it is obvious that the recursive estimation procedure
has to be initialized with the computation of the initial least-
square estimator. In this case a solution is denoted as Z;;, and
is computed with Egs. (2) and (3).

Once Z;);, is known, zk‘ % can be computed from Z;;, and y,
using the following equation set (for derivation see Appendix):

ik“c = iilk + kaMATQ;l(yk
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The first equation is referred to as the measurement update
equation (MU). It clearly shows how to update the previous
estimator Z;;, in order to take care of the new observable y, .
The second equation is called the variance update equanon
(VU).

Ak@i\k) (5)

C. Recursive processing update equations: discussion

In the MU equation, the vector A%, is referred to as a cor-
rection term. This vector depends on all previous observables
Y, @ =1,...,(k— 1), but it is independent of the current
one y Furtheron since Z;);, is unbiased, E{Z,;,} = z,
Ak:c,lk is an unbiased estimator of E{y, } = Ajz. In fact,
AxE{Z;,} is a BLUE of y, when the ‘estimation is based
on the partitioned model in Eq (9). Hence, AyZ;, can be
interpreted as the prediction of the present observable Yy The
difference y Yy —Ap T\ in Eq. (5) is therefore the re51dual value
between the observation and its prediction. This difference is
called the prediction residual and denoted as:

Vi =Yk — Akiﬂk . (6)
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In Eq. 5, the predicted residual v, is premultiplied by the gain
matrix:

K = (Q;jk + ATQ YA AT Q) (7

and the product is then added to the previous estimator Z;;,
to obtain the current estimation Z,. Hence, the gain by
including the observable y;, is determined by product Kjv,,.

Equation (5) also shows that the correction to the estimate
Z;), is small if the predicted residual vy is small. If the
predicted observation Ay, ;, is close to the actual observation
yi there is no need to change the estimate Z;;, by a large
amount. Furthermore, Eq. (5) also shows that the correction
to the estimate &, is small if the elements in the gain matrix
K, are small. From Eq. (7) it is clear that the gain matrix Kj,
depends on the precision of the previous estimator @z, , and
the precision of the added phase measurement Q.

D. Hypothesis testing in the case of recursion

The standard feature of the ILSQ PS-InSAR estimation
algorithm is that once estimates of unknown parameters and
corresponding variance matrix are obtained, the validity of the
mathematical model is tested on errors in observations, design
matrix, and variance matrix, [2]. It is possible to derive a
recursive procedures for hypothesis testing, namely the Overall
Model Test (OMT), [7].

In a similar manner, like in the case of the recursive
estimator, a scheme for a recursive update of the QTQ; le
teststatistic can be derived. For more details on the derivation,
see [7]. Adopting the notation of introduced partitioned model,
Eq. (4), the recursive update of OMT teststatistic is realized
by means of:

(€Qy &)k = (€Qy &)k +Q£|kQuk,,k2k\k
Qup = (Qrpk + AszMAZ) .

The recursive OMT teststatistic update shows how the norm
of the least-squares residual vector should be updated when
new observables become available. This approach enables us
to test whether a point which was assumed to be stable
in the past, remains stable when a new set of acquisitions
becomes available. However, due to the wrapped nature of the
observables, the standard hypothesis testing procedures may
accept the null hypothesis, even if the new point is not stable.
Hence, the testing algorithms for recursive PS-InSAR need to
further optimised and developed. This will be a study of the
future work.

®)

E. Argumentation for recursive data processing

Both processing strategies are capable of incorporating
observations stemming from phase measurements as well
as those from the system knowledge, i.e., stochastic nature
of observables. Although the processing strategy differs, the
estimation principle does not. Therefore, an identical estimator
Iy, for the parameter estimation at epoch & will be obtained
by using both concepts, see the Appendix.

In a batch estimation, the complete vector of observations is
processed at once and all unknowns are estimated together. In

this case, the realization of the data processing can be hindered
by practical limitations (computer memory restrictions and/or
data availability). In a recursion the PS-InSAR estimation per
epoch will have a relatively small size. Original images and
pre-processed data can be removed from the processing system
once they are processed and do not need to be stored. However,
in order to start with the PS-InSAR recursion, the initial
estimate L‘\ , of parameters of interest, ¢ > 15 acquisitions,
has to be available, e.g., a batch solution for the first epoch
(initialization) has to be used.

Moreover, estimations in batch can provide results with a
delay of a couple of years, e.g., after enough images are
acquired, delivered, pre-processed, etc. However, the recur-
sion can be run parallel to data gathering. Furtheron, with
appropriate covariance models, for atmosphere and non-linear
deformation, estimates of the parameters of interest can be
available in near real-time.

The main disadvantage of the recursive PS-InSAR is related
to the hypothesis testing procedures. This is because, in the
recursion, previous observables are removed and only the final
solution is stored and updated. Nevertheless, with a further
algorithmical and applicational optimisation of the recursive
PS-InSAR approach, i.e., by developing dedicated testing
procedures, this drawback can be circumvented. Another lim-
itation is related to the unavailable time series of phases of
the PS, since the non—-model displacement and atmospheric
phase screen are removed from an observed phase by means
of a low—/ high—pass filtering approach by utilizing the full
phase history of PS. This limitation can also be eliminated
by developing a class of covariance functions to model these
error sources, and including them into the stochastic part of the
model. Both of these drawbacks will be the topics of further
research.

III. SIMULATIONAL AND IMPLEMENTATIONAL ANALYSIS

In order to get a further insight in the performance and
complexity of the recursive PS-InSAR algorithm, an analysis
on simulated data is performed. A number of test runs under
different conditions (e.g., different error sources, geometries,
etc.) are performed and analyzed. In general, the simulated
interferometric phase follows the model of [4], with the
following parameters: the ERS type sensor; phase accuracy
o, = 0.06[cyc]; orbital tube of By, = 500[m] with
sensor localization precision of 10[cm]; APS is simulated as
a superposition of two fractal regimes 5/3 and 8/3, [4]; the
topography is simulated with o4y, = 10m; the velocity field
with 041 = 0.001[m] as a measure of the expected linear
deformation and o492 = 0.02[m] for the expected periodic de-
formation. Furthermore, for a non-linear deformation filtering
a (temporal) block filter of one-year length is applied.

Here, a test run on a data stack consisting of 30 (simulated)
interferograms is discussed. The test strategy is that first arc-
estimates from batch processing are obtained (using all 30
interferograms at once), see Figure 1(a). Then, the second es-
timation is performed in the recursive manner, first, a batch 24
interferograms solution is obtained, and subsequently updated
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(a) PS network (Delauney triangulation
of PSs) overlaid on top of the simulated
deformation field.

onmg = 0.02m.

(b) Histogram of (per arc) differences
of estimated heights from batch and re-
cursive ILSQ PS-InSAR strategies. The
differences are normally distributed with
zero mean and standard deviation of
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(c) Histogram of (per arc) differences
of estimated velocities from batch and
recursive ILSQ PS-InSAR strategies. The
differences are normally distributed with
zero mean and standard deviation of
oamg = 0.015 mm/yr.

Fig. 1. Results of numerical analysis. In plots (a) and (b) vertical axis stands for a number of arcs [0 — 90], while a horizontal one for differences in estimates

per arc [—0.05 — 0.05] in [m] and [mm/yr] respectively.

with the remaining 6 interferograms. The updating strategy
was that in the new epochs the number of interferograms was
enlarged by one, e.g., 1 + 2 + 3.

The results obtained from two different estimation pro-
cedures show a significant degree of match. The empirical
validation, see Figures 1(b) and 1(c), shows that the difference
between the two processing strategies is insignificant with
respect to the input simulation parameters. Moreover, both dif-
ferences are normally distributed with zero mean and standard
deviations of ooy = 0.02[m] and oaye = 0.015[mm/yr]
respectively.

IV. CONCLUDING REMARKS

A mathematical framework for the recursive PS-InSAR
processing has been developed and tested on simulated data.
The essence of the recursive PS-InSAR approach is that there
is no need to store past measurements (i.e., interferograms)
for the purpose of computing the updated least-squares esti-
mates. Furthermore, recursion in PS-InSAR framework gives
a significant improvement in processing time by means of an
efficient computation of the corresponding best estimates.

APPENDIX

Consider a partitioned model:

Y, Ai Y, Qi 0
E{|=|}= z; D{|=|}= . 9
(h=[a]= »ab-[3 o) »
Note that it is assumed that the measurement epochs y. and

y, are mutually uncorrelated. The least-squares solution of
Eq. (9) will be denoted as Zy,;,. It reads:

Zpp = (AT Q7 A; + AL Q" A) ™

(A7 Q7 'y, + AL Q; 'y, (10)
Qayyp = (AT Q7 Ai + ALQ; AR ™
Let us now consider the partial model:
By} = Aiz; D{y,} =Q; (11)
Its solution will be denoted as Z;);,. It reads:
i = (ATQ 1A 1(ATQ!
Qllk} ( (2 QZ ) ( 7 Ql yz) (12)

Qiuk = (AzTQiilAi)il

From this it follows that:

(A7 Qi A =
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and  ATQ7 'y, = Qx| Zip - (13)

Substitution of this result into the solution of the partitioned
model, Eq. (10), shows that:

Tpik = (Q;jk + A%Q;ZlAk)il(Q;jkiﬂk + A{Q;Zlgk)

Qik\k = (Qg,l‘k + AngzlAk)_l
(14)
This is identical to the solution of the model:
z; I z; Q. 0
E i|k — : D zlk:| — { Tilk :| 15
{[yk}} [AJ ! {L/k =100 ) @

Hence, it is proven that the solution of the partitioned model
Eq. (9) can be found in two steps. In order to obtain the
estimates for Z;;, and Qz,,, first the partial model Eq. (11) is
solved. Then in a second step Z;;, and Qz,, together with
Yy, and (Q; are used to find the final solution, via model
Eq. (15). This result shows that there is no need to store
past observations y; for the purpose of computing the updated
estimator Zy; and @z, , . Note that rearrangement of the right-
hand side of the first equation of Eq. (14) leads to the form
of Eq. (5). The presented derivation can be easily generalized
to two, or more then two, recursion steps by defining ¢ and &
as running indices in a certain range with ¢ < k condition.
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