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Abstract— This paper presents the concept of Dynamic Per-
sistent Scatterers Interferometry (PSI) processing, which enables
the sequential estimation of parameters. The method is based on
the Integer Least Squares (ILSQ) PSI concept and makes use
of the estimation vector and corresponding variance-covariance
matrix of the initial estimation epoch. In addition, the concept
of multi–modal adaptive estimation and testing is applied. The
algorithm systematically adds a new acquisition or set of acqui-
sitions to an existing stack, updates the solution of the previous
run, and analyzes whether the behavior of the (pre-) selected
points fits the expected one.

I. INTRODUCTION

Persistent Scatterer Interferometry (PSI) technique has been
proved to be an efficient algorithm for the joint estimation of
topographic and displacement parameters from a number of
interferometric combinations, [1], [2]. However, successful
application usually relies on processing all available images
at once, i.e., in batch. Therefore, in order to incorporate a
newly available acquisition into the estimation, and conse-
quently update the estimates, the whole processing has to
be re-performed. Such an approach consequently leads to
a cumulative increase in total processing time, it limits the
application to those areas where only a sufficient number of
images is available, and it reduces the potential application of
the method for near-real-time deformation monitoring.

All current multi-image processing techniques, can be de-
scribed as a hybrid parameter estimation problem; where
the estimation quantity has both continuous (e.g., deforma-
tion, height) and discrete components (e.g., ambiguity set(s)).
Conventional solutions to these estimation problems follow
the strategy that can be characterized as “estimation after
decision”. An algorithm first decides on the best discrete
component (i.e., ambiguity vector), and then estimates the
continuous component.

More specifically, most PSI algorithms simply “wait” until
enough information for the estimation has been obtained,
and then derive solution by statistically comparing possible
ones, until the correct ambiguity set becomes evident. The
disadvantage of this “off-line” approach is, that it ignores the
possibility of attaining a solution before the ambiguities are
declared “fixed”.

In this paper, recent developments on applicability and
validation of a new operational methodology for dy-
namic/recursive PSI are outlined. The concept of dynamic

PSI enables the sequential estimation of the parameters of
interest. The developed methodology systematically adds a
new acquisition, or set of acquisitions, to the existing stack,
updates the solution of the previous run, and analyzes whether
the behavior of the (pre)selected points fits the expected one.
The algorithm builds on concepts of dynamic data processing,
[3], integer least squares, [4], and Multi-Modal Adaptive
Estimation principles, [5]. Within the presented framework,
the ambiguity resolution is treated as a multiple-hypotheses
classification problem, [6].

The paper is organized as follows. Section 2 provides
background to the relevant mathematical model of PSI; as
well as a summary, of conceptual problems and extensions to
the mathematical model needed to accommodate for dynamic
PSI. Section 3 reviews principles of proposed Dynamic PSI
algorithm. Section 4 gives an evaluation overview on real
data, as well as implementation aspects. Finally, in Section
5 conclusions and comments on future work are given.

II. MATHEMATICAL MODEL OF PSI

The general mathematical model for Integer Least Squares
PSI approach in Gauss-Markov formulation has the following
form:
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where: y
1

stands for double-difference phase observations, y
2

for pseudo observations, A1,2 and B1,2 are design matrices,
a ambiguities (a ∈ Z), and b unknown parameters of interest
(b ∈ R). To simplify notation A1,2 are denoted as A and
B1,2 as B. Note that in the formulated model, the pseudo-
observables are required to solve the model rank-deficiency.

This constrained model is solved by means of Best Linear
Unbiased Estimation (BLUE) in two steps, [3]. First, the
estimate from the unconstrained linear model,considering a ∈
R, is obtained, resulting with a float solution x̂ = [â, b̂]T and
corresponding variance matrix Qx̂. This result is then input for
the second step, where the BLUE of x for constrained model
is obtained as the BLUE of E{x̂} giving a “fixed” solution of
the unknowns. Hence, the unknowns of the constrained model



are determined by, [3]:

b̌ = b̂ − Qb̂âQ−1
â (â − ǎ) (3)

with corresponding variance matrix:

Qb̌ = Qb̂ − Qb̂âQ−1
â Qâb̂ . (4)

In a practical application of ILSQ-PSI the upper described
procedure is solved in a three-step procedure, where an extra
step is introduced to resolve the ambiguities. This addition
is related to an optimization of the ambiguity search spaces
and it is realized through the LAMBDA algorithm, [3]. This
optimization results in a fixed solution for the ambiguities ǎ.
The fixed ambiguities are then used to obtain the solution of
the vector of unknown parameters b̌, by means of Eqs. (3) and
(4)

A. Partitioned model of PSI

The main goal of recursive algorithms is to estimate the
parameters of interest sequentially from the observed data.
The starting point in the analysis is partitioning of Eq. (1)
model. The partitioned model is formed of the solution of the
estimates from previous epochs and observation equations of
new observations:
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where parameters related to epoch i prior to new epoch k
are x̌i|k representing estimates of displacement parameters
and residual height, with corresponding variance-covariance
matrix Qx̌i|k . Parameters related to the new measurement y

k
are: the ambiguity ak, and ft, fB⊥ that represent the temporal
baseline and height-to-phase conversion factors respectively,
while σyk

represents the for standard deviation of the new
phase measurement. The mathematical framework in which
recursive updates are performed is given by Figure 1.

Fig. 1. One cycle of the recursive estimation procedure, corresponding with
the partitioned model Eq.(5)

B. Influence of pseudo observations

In case of PSI the pseudo-observables and the accompa-
nying variance matrix cause a bias in the solution. This is
the result of the uniqueness of the solution of the system
of equations Eq. (1), that is, the lack of redundancy. Due
to this uniqueness the variance matrix Qy used does not
influence the estimated parameters â, b̂. Hence, any value can
be adopted for the variance of the pseudo-observables (Qy2)
without influencing the estimates. However, the choice of Qy2

does influence the variance matrices of the estimates Qâ, Qb̂â.
This shows that there is no basic relationship between the
estimates and the accompanying variance matrices. Results
obtained with Eq. (3) are therefore unreliable and, hence, a
straightforward application of the recursive model not possible.
In the current implementation this problem is solved by means
of Variance Component Estimation (VCE), [7].

III. CONCEPT OF DYNAMIC PSI ESTIMATION

As all other ambiguity resolution algorithms, the dynamic
PSI algorithm is based on monitoring the measurement resid-
uals by statistically comparing possible solutions, until the
correct ambiguity set becomes evident. In the case of a
dynamic approach, these statistics is gathered and evaluated
sequentially, that is, without algorithmic need to save previous
estimates. However, in a case of sequential estimation, the
rank deficiency usually a minimum number of images is
necessary, see Figure 2. Therefore, the conventional recursive
approach, see Figure 1, for the successful application needs to
be extended.
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Fig. 2. Recursively computed time history of conditional probabilities (see
Eq. (6)) of different ambiguity resolution vectors of one arc. Each conditional
probability, hence ambiguity vector, is visualized in different color. Note that
the correct solution, given the data, is the one showing the highest probability,
and that the correct solution cannot be clearly indicated with limited set of
images. In this example, after 14 updates the correct solution is indicated,
thus, fixing on a certain ambiguity vector with less then 14 images in the
system would result with incorrect estimates.

The basic idea of the algorithm is based on the construction
of a “belief network”, see Figure 3(b), based on the previous
estimates, [5]. This idea is realized through a finite set of
estimators, each of which hypothesizes a different ambiguity
candidate set. The residual vector and its covariance, computed



(a) Dynamic PSI algorithm: algorithm building blocks for one branch of belief
network. In each recursive update estimates and corresponding vc matrix of
parameters of interest are computed/updated w.r.t. previous estimates. The
evaluation of different ambiguity vectors and computation of corresponding
conditional probabilities used for their validation is computed in hypothesis
testing block.

(b) Concept of “belief network”, each of the ambiguity candidate
vectors is recursively evaluated through conditional probabilities,
see Figure 2. Tree branches showing the least likelihood of being
correct ones are eliminated from further evaluation. The black
dots indicate ambiguities, while lines connecting them ambiguity
vectors. Shaded block are recursively rejected ambiguity vectors.

Fig. 3. Flowchart of Dynamic PSI algorithm.

as the difference between the measurement, yk, and the filter’s
prediction of the measurements before they arrive, are then
evaluated by the hypotheses testing algorithm. The output
of the testing gives a relative indication of how close each
ambiguity set, used in various filters, is to the “true” ambiguity
model.

A. Multi-Modal Adaptive Estimation (MMAE)

The belief network, used for the evaluation of the ambiguity
vectors is constructed by means of the Multi-Modal Adaptive
Estimation algorithm, [5]. MMAE is a bank of individual
estimation filters each based on a particular assumption about
the system of interest. Each filter generates its own optimal
estimate of the parameters of interest, based not only on the
system measurements, but also on its own assumptions of the
system. In the case of dynamic PSI the system assumptions
relate to different ambiguity vectors. The residual vector and
its covariance, see Figure 1, are measures of how well the
ambiguity vector in the estimation filter matches the true one.

1) Computation of conditional probabilities: The residuals
υk, see Fig. 1, are used to calculate the conditional prob-
abilities of each estimation filter, thus the ambiguity vector
assigned to that particular filter, being the correct one. Equa-
tion (6) shows how to calculate the conditional probability for
one filter for time sample ti and elemental filter k:
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where the conditional densities for k–th elemental filter is
calculated as:
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where the equation for the recursive update of the LSQ-
residual variance covariance matrix is calculated as:

Qυk
(ti) = (Qk + AkQx̌k

(ti−1)AT
k ) (8)

where m is the number of phase measurements in the update.
An example of recursively computed conditional probabilities
and their time history is given in Figure 2.

B. Multiple-hypotheses testing: evaluation and rejecting of
ambiguity candidates

An important aspect of the overall algorithm that is the
concept of elemental filter rejection. In order to allow a
solution to eventually reach the correct solution, one of the
estimation filters must “absorb” the entire probability weight.
However, Eq. (6) shows that this is not possible unless there is
only one elemental filter, and hence, only one ambiguity vector
in the system. Therefore, a logic was added to the algorithm
that would remove an ambiguity vector if the conditional
probability of that path remained at the lower bound for more
than a specific number of consecutive sample periods. The
recommended number, in which rejection / merging should be
performed, is 5-10 sample periods.

The principles of the Dynamic PSI algorithm are depicted
in Figure 3, where a flowchart of the algorithm is given as
well as an example of a “belief network”.

Dynamic PSI algorithm constantly searches for the changes
in the system by monitoring the bias in recursively computed
residuals. The “belief network” serves as a “path-finder”,
where using the child/parent concept of genetic algorithms, the
performance of different ambiguities is evaluated and on this
basis the “unwrapping tree” is constructed. Moreover, the tree
branches are weighted by hypothesis testing and any branch
that does not satisfy the pre–requisite criteria on probability is
rejected. This concept serves as a protection from the false



Fig. 4. Sample are 1. Temporal unwrapping, estimation per-arc: All algorithms retrieved same estimate. From left to right, the graphs depict the results from
various unwrapping algorithms.

Fig. 5. Sample arc 2. Due to the temporal sampling, estimation per-arc: Due to temporal sampling of data, both bootstrapping and recursive ILSQ, estimated
incorrect results.

rejection as well as the protection from a false ambiguity
acceptance.

IV. RESULTS AND ALGORITHM ANALYSIS

The performance Dynamic PSI algorithm is evaluated first
on a single-arc basis, through cross-comparison with different
unwrapping/PSI estimation concepts, i.e., ILSQ, bootstrap-
ping, ambiguity function, recursive model based on ILSQ, and
dynamic PSI estimators are cross-compared.

For validation real life PSI estimates are used,related to 12
years of ERS data. The results of standard processing using a
linear deformation model for tow independent arcs are shown
in Figures 4 and 5.

For cross-comparison, batch-processed ILSQ-PSI estimates
are used as a reference. Two independent arcs are analyzed.
The strategy for evaluation was that estimates of ILSQ,
bootstrapping and the ambiguity function, are obtained in
batch, i.e., processing all available images at once. For the
recursive ILSQ model, an initialization with 10 interferograms
was performed, while updates were with 2 acquisition. The
Dynamic PSI results are obtained with 3 interferograms for the
initialization, and with consecutive updates of 1 acquisition.

Results indicate that the Dynamic PSI approach, even
though initialization was performed with small number of
images would find the “correct” solution (i.e., the ILSQ-
PSI) just after a few updates. The flexibility of the Dynamic
PSI algorithm is demonstrated in Figure 5, where both the
bootstrapping and the recursive model estimation failed to
estimate the correct ambiguity vector.

V. CONCLUDING REMARKS

The initial results on real data are encouraging and support
studies to improve the performance and robustness of the al-

gorithm. Apart from the development and performance testing
of the dynamic 1D+2D unwrapping algorithm, developments
would be the extension of validation strategies to sequentially
estimated parameters, as well as study on the influence of
geometrical characteristics of the stack on Dynamic PSI.
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