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ABSTRACT

Image alignment is without doubt the most crucial step in SAR Interferometry. Interferogram formation requires
images to be coregistered with an accuracy of better than 1/8 pixel to avoid significant loss of phase coherence.
Conventional interferometric precise coregistration methods for full-resolution SAR data (Single-Look Complex
imagery, or SLC) are based on the cross-correlation of the SLC data, either in the original complex form or
as squared amplitudes. Offset vectors in slant range and azimuth directions are computed on a large number
of windows, according to the estimated correlation peaks. Then, a two-dimensional polynomial of a certain
degree is usually chosen as warp function and the polynomial parameters are estimated through LMS fit from
the shifts measured on the image windows. In case of rough topography and long baselines, the polynomial
approximation for the warp function becomes inaccurate, leading to local misregistrations. Moreover, these
effects increase with the spatial resolution and then with the sampling frequency of the sensor, as first results on
TerraSAR-X interferometry confirm. An improved, DEM-assisted image coregistration procedure can be adopted
for providing higher-order prediction of the offset vectors. Instead of estimating the shifts on a limited number of
patches and using a polynomial approximation for the transformation, this approach computes pixel by pixel the
correspondence between master and slave by using the orbital data and a reference DEM. This study assesses the
performance of this approach with respect to the standard procedure. In particular, both analytical relationships
and simulations will evaluate the impact of the finite vertical accuracy of the DEM on the final coregistration
precision for different radar postings and relative positions of satellites. The two approaches are compared by
processing real data at different carrier frequencies and using the interferometric coherence as quality figure.

Keywords: Synthetic Aperture Radar (SAR), interferometry, coregistration, Digital Elevation Model (DEM).

1. INTRODUCTION

Synthetic Aperture Radar Interferometry (InSAR) is the study of coherent combinations of SAR images taken
from slightly different observation directions. Precise (sub-pixel)1 co-registration is then required as first pro-
cessing step. This is a non-trivial task, since a change in radar acquisition geometry generates image shifts which
depend on the topography.2 One of the most used approaches relies on the fact that SAR images suitable for
interferometry are separated by relatively small geometric baselines (compared e.g. to radargrammetric process-
ing2). In this case, when topographic variations are not too strong, the change in acquisition geometry from one
image to the other can be approximated by a low-order polynomial transformation.

For rough topography, however, this polynomial model is hardly sufficient, and a more complex model depend-
ing on the topography, should be used to ensure the required coregistration precision. Moreover, misregistrations
due to the smoothness of the polynomial warp model are more significant when increasing the normal baseline,
thus becoming unacceptable, especially for the new X-band SAR satellites (TerraSAR, COSMO/SkyMed), be-
cause of their higher spatial resolutions and sampling rates with respect to ESA C-band sensors (ERS, ENVISAT).
Various groups reported experiences with DEM-based coregistration approaches applied to conventional InSAR
techniques,3, 4 detecting some improvement w.r.t. more conventional methods, although to date such assessments
have been rather empirical.
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This study intends to assess the performance of this approach with respect to the conventional procedure based
on cross-correlations and the approximated polynomial warp function. We refer to a DEM-assisted technique
developed at TU Delft3 and included in the DORIS open-source SAR interferometric processing tool.5

The paper is organized as follows. In Sec. 2 the geometrical model is described and the analytical formulation
of the relative shifts between two images are computed as a function of the known mission parameters. Section 3
provides the results obtained by simulating different acquisition configurations. In particular the effect of the
DEM errors on the final coregistration precision is evaluated. In Sec. 4 the conventional coregistration procedure
and the DEM-assisted coregistration procedure are compared by processing real data acquired at L, C, and X
band. Comments and conclusions are provided in Sec. 5.

2. ANALYTICAL FORMULATION

The following formulation illustrates the analytical estimation of the slant range offset between two SAR images,
assuming exact knowledge of the position of the satellite during the two acquisitions as well as the topographic
profile of the imaged scene. Let us start with a description of the geometrical model adopted.

2.1 Geometrical approach

Because of the flattening of the Earth, an ellipsoid (such as WGS84) is much more accurate than a sphere
for modeling the Earth geometrically. Nevertheless, as we will show, spherical models can be used as a good
approximation of the local ellipsoidal surface, limited to the swath extension, with negligible errors.

In this section we introduce a spherical model (Fig. 1a) that will be further refined in Sec. 2.2. All geometric
parameters involved in the following discussion have to be computed in an ECEF (Earth Centered Earth Fixed)
reference system Oxyz (see Fig. 2a), thus intrinsically taking into account the effect of the Earth’s rotation. First
of all, instead of assuming a constant mean value for the Earth’s radius ρ during the satellite’s orbit around the
Earth, we will choose a value “tuned” to the master image slow time (or azimuth time), since Earth curvature for
a generic point on the ground w.r.t. any cross section is a function of the geodetic latitude (not of the longitude,
because of the symmetry of the ellipsoid). Therefore, once the master slow time instant is fixed, a good choice
for the radius ρ of the spherical model can be the Earth curvature radius Raz of the nadir projection of the
master satellite position on the reference ellipsoid (P nad

M , with geodetic coordinates ΦM and ΛM ) w.r.t. the
zero-Doppler plane π, because of the side-looking acquisition mode of SAR sensors and the assumption of zero-
Doppler (deskewed) stripmap imaging geometry (Fig. 2). The azimuth angle of the cross section π is therefore
equal to (αh + π/2) (in case of right looking), where αh is the inclination, or heading, of the orbit (measured
clockwise from the north direction). The Earth curvature Raz corresponding to the section π is equal to (Euler’s
theorem):6

1
Raz

=
cos2(αh + π

2 )
M

+
sin2(αh + π

2 )
N

, (1)

where M and N are the radii of curvature of the meridian and the prime vertical, respectively, for the specific
point P nad

M (ΦM ,ΛM ) considered:

M =
a(1 − e2)

3
√

1 − e2 sin2 ΦM

, N =
a

√
1 − e2 sin2 ΦM

(Meusnier’s theorem7). (2)

and a, b and e are the semi-axes and the first eccentricity of the reference ellipsoid.

In other words, for each master slow time instant, the cross section between the corresponding zero-Doppler
plane π and the reference ellipsoid is an ellipse that we are approximating, nearby the projection P nad

M , by a
circle of radius ρ = Raz, centered on the curvature center Õ of the ellipse w.r.t. P nad

M , by assuming that such
an approximation is still acceptable for all points on the ellipse belonging to the image swath. Therefore, for
every point along the ground swath, the difference between the heights above the spherical approximation, HG,
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and the reference ellipsoid, hG, is assumed negligible (Fig. 1). In the zero-Doppler plane π, we define a reference
system Õx̃ỹz̃ (see Fig. 2), with origin in Õ, whose coordinates in the Oxyz reference system are:

⎡

⎣
xÕ

yÕ

zÕ

⎤

⎦ =

⎡

⎣
rxx̃ rxỹ rxz̃

ryx̃ ryỹ ryz̃

rzx̃ rzỹ rzz̃

⎤

⎦

⎡

⎣
0
0

N − Raz

⎤

⎦ +

⎡

⎢
⎣

0
0

− tan ΦM (a2−b2)√
a2+b2 tan2 ΦM

⎤

⎥
⎦ , (3)

where the matrix of coefficients rij̃ is given by:
⎡

⎣
rxx̃ rxỹ rxz̃

ryx̃ ryỹ ryz̃

rzx̃ rzỹ rzz̃

⎤

⎦ =

⎡

⎣
sin ΛM cosΛM 0

− cosΛM sin ΛM 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 sin ΦM cosΦM

0 − cosΦM sin ΦM

⎤

⎦

⎡

⎣
− cosαh − sinαh 0
sin αh − cosαh 0

0 0 1

⎤

⎦ .

(4)
The z̃ axis is coincident with the zenithal direction of the master satellite position, while the x̃ axis is normal to
the first one, directed towards the looking direction of the radar.

In theory, precise orbits and a Digital Elevation Model, radarcoded in master geometry, are sufficient for
retrieving analytically the offset between master and slave along the slant range direction at each specific master
slow time instant, as described further on, where a negligible convergence between master and slave orbits and
zero-Doppler geometry has been assumed for simplicity.

The aim is to estimate, for each master pixel number pM , the corresponding slave pixel position number pS

and so the relative offset in range ∆p = pS − pM . Actually, we are interested in evaluating the influence of the
baseline (in particular its normal component) on the range offsets. Therefore, a description of the slave satellite
position in terms of relative position w.r.t. the master satellite is preferable. With B we indicate the distance
(baseline) between master and slave, while α is the off-nadir baseline orientation angle, measured towards the
SAR looking direction. Slave height HS is related to master height HM , baseline and baseline orientation angle
by the following relation:

ρ + HS =
√

(ρ + HM )2 + B2 − 2B(ρ + HM ) cosα. (5)

For a given pixel number pσ (where pσ = 0 . . . (Npσ − 1) and σ ∈ {M, S}, with M = “Master”, S = “Slave”),
master and slave slant range distances Rσ,G are related to the corresponding 2-way zero-Doppler range times τpσ

(or fast times) through:

τpσ = τσ0 +
pσ

fs
, Rσ,G =

c

2
τpσ =

c

2
(τσ0 +

pσ

fs
) , (σ ∈ {M, S}) , (6)

where c is the speed of light, fs the range sampling rate and τσ0 (σ ∈ {M, S}) are the 2-way zero-Doppler range
times for the first range pixels. Pixel offsets between master and slave along range direction are hence given by:

∆p = pS − pM =

= fs(2
RS,G

c
− τS0) − pM =

= fs

(2
c
(RS,G − RM,G) + (τM0 − τS0)

)
.

(7)

Then, for a given master–slave configuration, the offset between master and slave is directly proportional to
the range sampling rate. For each master pixel pM , the main problem is finally the estimation of the distance
RS,G between the slave satellite and the ground point G, whose height above the spherical model and distance
from the master satellite are equal to HG and RM,G, respectively. This can be accomplished by observing that
(Fig. 1a):

sin δM,S

B
=

sin α

ρ + HS
,

sin δM,G

RM,G
=

sin θM,G

ρ + HG
,

sin(δM,G − δM,S)
RS,G

=
sin θS,G

ρ + HG
,

cos2 θσ,G =
(ρ + Hσ)2 + R2

σ,G − (ρ + HG)2

2Rσ,G(ρ + Hσ)
(σ ∈ {M, S}) ,

(8)
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where δσ,G and θσ,G (with σ ∈ {M, S}) are the look angles of the ground point G from, respectively, the curvature
center Õ and the satellites positions (Fig. 1a). For each master pixel pM , RM,G is expressed by eq. (6) and RS,G

can be estimated numerically by combining eq. (8) into:

arcsin
RM,G

ρ + HG

√

1 − (ρ + HM )2 + R2
M,G − (ρ + HG)2

2RM,G(ρ + HM )

− arcsin
RS,G

ρ + HG

√

1 − (ρ + HS)2 + R2
S,G − (ρ + HG)2

2RS,G(ρ + HS)
= arcsin

B sin α

ρ + HS
,

(9)

to solve for RS,G. In the above expressions, the baseline B and baseline orientation angle α have been used,
instead of the parallel and normal components of the baseline, since the latter are functions of the look angle
θM,G. Their expressions are:

B⊥ = B sin(α − θM,G), B sinα = B⊥ cos θM,G + B‖ sin θM,G,
B‖ = B cos(α − θM,G), B cosα = B‖ cos θM,G − B⊥ sin θM,G. (10)

In case |B‖| � |B⊥| ≈ B or |B⊥| � |B‖| ≈ B, eq. (9) can be simplified in the following way, as expected:

RS,G ≈
⎧
⎨

⎩

RM,G − B‖ if |B‖| � |B⊥|,
√

R2
M,G + B2

⊥ if |B‖| � |B⊥|.
(11)

In brief, the offset between master and slave can be expressed, through eqs. (7)–(9), as the product of the
range sampling rate and a function of the normal and parallel baselines, as well as the topographic height HG

above the spherical model adopted (by assumption, very close to the height hG above the reference ellipsoid).

2.2 Geometrical Model Refinement

The spherical model introduced in the previous section assumes implicitly that the curvature center of the elliptic
cross section π (Fig. 2a) corresponding to a point generically selected along the swath extension is coincident or,
at least, very close to the origin Õ, that is the curvature center w.r.t. the nadir projection of the master satellite
position P nad

M . This approximation is acceptable only for very low geodetic latitudes (e.g. Tanzania – see Sec. 4.1)
since, near the Equator, the orbital heading αh is not too far from (0, 180) degrees (depending on the orbital
pass direction, whether ascending or descending) and, therefore, the zero-Doppler plane π is roughly parallel
to the prime vertical section. Since, for any point located near to the Equator, its prime vertical section is, in
turn, roughly parallel to the equatorial plane, the eccentricity of the corresponding elliptic cross section is very
close to 1. For high latitudes, however, a model refinement is necessary. In this case, indeed, by evaluating the
distance between a generic ground point and the origin Õ, its variation along a swath extension of 100 km (ERS)
may reach also hundreds of meters. Actually, the spherical approximation so far introduced can be still adopted,
provided the height above the reference ellipsoid of any ground point G along the swath (hG), is preliminary
converted into the corresponding value above the spherical model (HG). In order to avoid such a conversion,
the optimal spherical approximation should ensure a negligible difference (HG − hG), for any ground point G.
Because of the side-looking acquisition geometry, this can be obtained with a circle whose center Cmr and radius
ρ̃ are equal, respectively, to the center and radius of curvature of the elliptic cross section corresponding to
the point P nad

mr located at the swath middle range, instead of the master nadir projection P nad
M (see Fig. 2b).

Simulations show that this approximation is valid at any latitude, since the distance between a generic point on
the ellipse from near to far range on the swath extension and the curvature center Cmr differs from the radius ρ̃
by no more than half centimeter for the case of a 100 km swath extension, which is the widest one among the
sensors considered here. The model is also valid for wider swaths, such as in the case of the future Sentinel-1
mission (∼ 250 km) for the Interferometric Wide Swath Mode.

The position of the center Cmr can be easily derived once an analytical expression for the elliptic cross section
in the zero-Doppler plane π has been retrieved. With respect to the Õx̃z̃ reference system, the elliptic cross
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section (whose semi-axes â and b̂ and first eccentricity ê are different in general from those of the reference
ellipsoid) is described by the following equation:

(rxx̃x̃ + rxz̃ z̃ + xÕ)2

a2
+

(ryx̃x̃ + ryz̃ z̃ + yÕ)2

a2
+

(rzx̃x̃ + rzz̃ z̃ + zÕ)2

b2
= 1, (12)

where the coefficients rij̃ are given by (4).

Once a rotation and translation of the Õx̃z̃ axes are performed in order to make them coincident with the
ellipse axes (coordinate system Ôx̂ẑ in Fig. 2b), the coordinates of the curvature center Cmr are given by:

x̂Cmr = x̂Pnad
mr

− â(1 − ê2) cos ϕPnad
mr

3

√
1 − ê2 sin2 ϕPnad

mr

, ŷCmr = ŷPnad
mr

− â(1 − ê2) sin ϕPnad
mr

3

√
1 − ê2 sin2 ϕPnad

mr

, (13)

where P nad
mr is the projection on the ellipse of the ground point at middle range, Gmr, and the angle ϕPnad

mr

(Fig. 2b) should not be confused with the geodetic latitude of P nad
mr , since the zero-Doppler plane π is not

coincident in general with the prime meridian section.

As mentioned, our aim is to estimate, for each master pixel pM , the corresponding range offset between
master and slave or, equivalently, see eq. (7), the distance RS,G between the slave satellite and the ground point
G. Assuming the position of Cmr in the Õx̃z̃ reference system has been retrieved for a generic master slow time,
the distance RS,G can be estimated more accurately in the refined geometrical model just described. Actually,
eq. (9) is still valid, provided the following substitutions are made:

α → (α − β), (ρ + HM ) → RC,M , (ρ + HS) → RC,S , (ρ + HG) → (ρ̃ + HG), (14)

where the height HG above the spherical model for a generic point G along the swath extension may be further
replaced with the corresponding value hG above the reference ellipsoid, thanks to the refined spherical model
described in this section, and

RC,M =
√

R2
Õ,M

+ R2
Õ,C

− 2RÕ,M RÕ,C cos δM,C , RC,S =
√

R2
Õ,S

+ R2
Õ,C

− 2RÕ,S RÕ,C cos(δM,C − δM,S) ,

RÕ,S =
√

R2
Õ,M

+ B2 − 2BRÕ,M cosα , sin β =
RÕ,C

RC,M
sin δM,C , sin δM,S =

B

RÕ,S

sinα ,

are all known quantities and not dependent on the master pixel considered.

3. SIMULATIONS RESULTS

Traditional SAR image registration methods are based on the estimation of azimuth and range warp functions,
mapping the slave onto the master image in both directions. In general, such functions are modeled as 2-D poly-
nomials of a certain degree. Because of their smoothness, they well approximate the true geometric distortions
only at low normal baselines and for gentle topography, especially for sensors with higher range sampling rate,
as will be shown in the next section. The sensitivity of the DEM-assisted coregistration to the DEM vertical
accuracy will be discussed in Sec. 3.2.

3.1 Effects of the warp function smoothness
The analytical formulation described in the previous section allows to estimate the actual offset in pixels along
slant range, ∆p = pS − pM , between master and slave images, at any slow time instant. Therefore, the effective-
ness of any kind of warp function in terms of its capability to fit the true geometric distortions may be analyzed
w.r.t. any terrain profile. In particular, our investigation is restricted to warp functions ∆p̃pol described by
polynomials of a certain degree n, whose coefficients Ak are estimated in order to best fit (least-mean-squares
approach) the actual offset trend ∆p, from near to far range:

∆p ≈ ∆p̃pol =
n∑

k=0

Akpk
M . (15)
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Since range offsets ∆p are directly proportional to the range sampling rate fs (eq. (7)), and the polynomial
coefficients Ak are estimated through a LMS procedure, it is possible to proof that also the polynomial coefficients
Ak are directly proportional to fs. Therefore:

∆p̃pol = fs

n∑

k=0

akpk
M . (16)

where coefficients ak are, therefore, not anymore dependent on the range sampling rate considered. The smooth-
ness of the polynomial warp function is obviously inadequate for modeling geometric distortions in case of rough
topography and long baselines, leading to local misregistrations, (∆p − ∆p̃pol), as much as higher is fs.

Actually, the fit is also poor for very regular terrain profiles, in case of high normal baselines and strong
differences between the maximum and the minimum topographic height over the scene, ∆HG. This can be
shown by modeling the terrain profile over the entire swath as a raised cosine, centered at mid-range and with
spatial period equal to the swath width. Results are summarized in Figs. 3a-b for SAR sensors with different
carrier frequencies, as well as spatial resolution, range sampling rate and swath covered, a topographic range
∆HG of 1 km, over the entire swath, and polynomial degrees n ∈ {2, 3}.

By fixing the baseline B (1 km in Fig. 3) and varying the baseline orientation angle α from 0 to 360 degrees,
maximum misregistrations may be derived for the entire range of normal baselines |B⊥| from 0 to B. So, for any
baseline orientation angle, normal baseline and offset residual values can be derived from the polar diagrams in
Fig. 3a and -b. The plots show that offset residuals increase with the normal baseline |B⊥|, the height range ∆HG

over the scene, and the range sampling rate, as expected. Actually, a fair comparison among the three bands
can be done only by assuming an identical value for the incidence angle. Because of the multi-beam capability
of new L- or X-band SAR sensors, all simulations refer to the particular beams of the real data processed (see
Sec. 4.1). This explains why, despite the doubled chirp bandwidth, the entity of misregistrations for a given
parameter triplet for ALOS {|B⊥|, ∆HG, n} is comparable (see Fig. 3b) to the corresponding residuals for the
ERS satellite. ALOS simulations refer, indeed, to an incidence angle of ∼ 38.7 degrees, while the same angle is
only ∼ 23.2 deg for ERS data.

A DEM-assisted approach seems to be absolutely necessary for a proper coregistration of X-band SAR images,
even in case of moderate values for |B⊥| and ∆HG, since offset residuals cannot be reduced under 1/8 pixel with
a polynomial of reasonable degree (i.e., no more than 3). In spite of a slant range resolution five times lower
than TerraSAR-X, even the coregistration of ALOS interferograms is expected to be significantly improved since,
actually, SLC pairs with normal baselines of few kilometers are not unusual for this sensor (the ALOS critical
baseline is ∼ 15km – Tab. 1). Misregistrations more than 1/8 pixel never occur, instead, for ERS images, with
a third degree polynomial and a topographic range of 1km, even with normal baselines near to the critical
baseline (∼ 1.1 km, for ERS). Nevertheless, even for ERS images, the minimum required accuracy for a proper
coregistration is hardly achievable with higher topographic ranges and/or a second degree polynomial.

3.2 DEM error analysis
The height information in the radarcoded DEM is affected by errors mainly due to the intrinsic finite vertical
accuracy of the Digital Elevation Model, and, to a lesser degree, to the accuracy of the radarcoding procedure.
For instance, the Shuttle Radar Topography Mission (SRTM) provided DTED-2 DEMs, with a posting of 90×90
meters (outside USA) and 15 m absolute height resolution for most of the Earth’s surface; as we will see, such
accuracy is sufficient for our registration purposes. In this section we estimate the entity of offset residuals for a
given height error. First of all, let us indicate with pS the slave pixel number corresponding to a generic master
pixel number pM , estimated theoretically under the analytical formulation introduced above, and assuming to
know exactly the height of each pixel. The relative offset, ∆p = pS−pM , can be determined through eq. (5), once
the slant range distance between the slave satellite position and the ground point G, RS,G, has been estimated.
Since DEM errors δHG (setting H̃G = HG + δHG) affect the slave slant range estimation, R̃S,G, erroneous values
are estimated for the slave pixel number, p̃S , w.r.t. the same master pixel number pM , and so for the estimated
offset, ∆p̃dem = p̃S − pM , leading to misregistrations:

pS = 2
fs

c
RS,G − fs τS0, p̃S = 2

fs

c
R̃S,G − fs τS0
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The entity of the misregistration, (∆p̃dem − ∆p), is therefore equal to:

(∆p̃dem − ∆p) = p̃S − pS = 2
fs

c
(R̃S,G − RS,G) . (17)

Assuming moderate height errors, a linear approximation becomes acceptable:

R̃S,G � RS,G +
∂RS,G

∂HG
δHG , (∆p̃dem − ∆p) = 2

fs

c

∂RS,G

∂HG
δHG , (18)

According to the geometrical model described in Sec. 2.1, the following equation for the slave slant range variation
w.r.t. the topographic height can be derived:

∂RS,G

∂HG
=

1
RS,G

[(HG + ρ) − (HS + ρ) ξ] , (19)

where
ξ = cos (δM,G − δM,S) (1 − tan δM,G tan(δM,G − δM,S) ζ(HG, HM , ρ, RM,G)) , (20)

with

ζ(HG, HM , ρ, RM,G) =

[
(HG + ρ)2 − (

(HM + ρ)2 − R2
M,G

)][
(HG + ρ)2 +

(
(HM + ρ)2 − R2

M,G

)]

[
(HG + ρ)2 − (

(HM + ρ) + RM,G

)2
][

(HG + ρ)2 − (
(HM + ρ) − RM,G

)2
] . (21)

This formulation is extendable to the more accurate geometrical model described in Sec. 2.2, by applying the
substitutions in eq. (14). As for the offset residuals due to the warp function smoothness, also the residuals due
to the DEM errors are directly proportional to the range sampling rate (eq. (18)). Moreover, by varying the
baseline orientation angle α from 0 to 360 degrees, the influence of DEM errors on the coregistration accuracy
may be derived for a range of normal baselines. Fig. 3c illustrates the misregistration trends due to DEM errors
in C, L and X band, w.r.t. the NASA SRTM DEM vertical accuracy and by varying the topographic height
range ∆HG equal to 1 km. It can be proof that the influence of HG in eqs. (17)–(20) is very weak. Therefore,
a simplified but well-approximated expression for the factor ζ(HG, HM , ρ, RM,G) can be retrieved by imposing
HG = 0.

As shown in Figs. 3b–c, the entity of misregistrations (∆p̃pol −∆p), in case of a polynomial warp function of
second or third degree, are, in all three bands, well above the offset residuals (∆p̃dem −∆p) due to DEM errors,
by assumption not exceeding ∼ 15 m, i.e. the nominal SRTM vertical accuracy. This is much more evident in
Fig. 3d, where the ratio (∆p̃pol − ∆p)/(∆p̃dem − ∆p) is plotted for the three bands. This ratio does not depend
on the range sampling rate, because of the linear dependency on fs of both offset residuals at numerator and
denominator. Therefore, differences among ERS, ALOS, and TerraSAR plots in Fig. 3d are mainly due to the
different look angles, satellite heights and covered swaths among the sensors. As shown in Fig. 3d, even with
a third degree polynomial, misregistrations due to DEM errors are more than ten times less than the offset
residuals due to the polynomial smoothness. In case of rough topography, we suggest, therefore, a DEM-assisted
approach as the preferred method for coregistration of high resolution images (X-band), as well as for coarser
resolution images (L- and C-band). The vertical accuracy of NASA SRTM DEMs can therefore be considered
acceptable for a successful DEM-assisted coregistration, still in case of high-resolution SAR images. Actually,
the referred vertical accuracy of NASA SRTM DEMs should be considered as an optimistic estimate, since it
refers to a ground resolution much coarser than that of the SAR sensor, even for ERS images (i.e., the SAR
images with the worst resolution, compared to the other L- or X-band SAR sensors investigated). DEM errors
may be therefore much higher in practice, still discarding those introduced by an erroneous DEM radarcoding,
by themselves not quite negligible. This means that, especially for ERS images (where misregistrations due
to smooth warp functions are the weakest among the SAR sensors considered in the present work, because of
the lower range sampling rate), the improvements introduced by the DEM-assisted coregistration may be less
significant in practice.
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4. REAL DATA PROCESSING

We recall that the complex coherence γ is defined as:1

γ =
E[s1s

∗
2]√

E[s1s∗1]
√

E[s2s∗2]
(22)

where s1 and s2 are the two complex SAR signals. Assuming ergodicity, it can be estimated through the following:

γ ≈ 〈s1s
∗
2 exp[−jφ]〉

√〈s1s∗1〉 〈s2s∗2〉
(23)

where the average operation is performed spatially, and φ is a phase component including effects of topography,
displacement, and any residual phase not constant within the estimation window. It can be shown8 that γ can
be factorized in terms of the sources of decorrelation as follows:

γ = γtemporal · γgeom · γDC · γvol · γthermal · γprocessing (24)

(see Ref. 1 for a detailed description of each decorrelation contribution). Misregistrations, as well as errors
occurring during interpolation, translate in a loss of coherence, expressed by the decorrelation contribution
γprocessing. Therefore coherence estimation may be used in order to compare the DEM-assisted coregistration
potentials w.r.t. the standard approach, where a 2-D polynomial of a certain degree (we use second degree in the
results shown further on) is used in order to model the warp function between master and slave. However, this
contribution will be hardly discernible in case the other sources of decorrelation play an important role. Indeed,
let us indicate with γ̃ (resp., γ̂) the coherence map evaluated for the interferograms obtained by coregistering the
images in the standard way (resp., through the DEM-assisted procedure). The difference between the coherence
maps estimated with the two methodologies is therefore given by:

γ̃ − γ̂ = γtemporal · γgeom · γDc · γvol · γthermal · (γ̃processing − γ̂processing)
= Γ · (γ̃processing − γ̂processing)

(25)

Our goal is to measure the quantity (γ̃processing − γ̂processing), but this is actually weighted by Γ. Therefore, a
comparison between DEM-assisted and standard coregistration approaches will be more feasible as Γ is close to
1.

4.1 Data sets description

For a complete assessment of the potentials of the DEM assisted coregistration, our investigation has been
extended over C, L, and X-band interferograms, using sensors with very different spatial resolutions (see tab. 1
for details).

To minimize the temporal decorrelation, only interferometric pairs with a temporal baseline equal to the
corresponding orbital repeat cycle have been chosen. For the COSMO/SkyMed pair and the Umbria Test Site,
moreover, the temporal baseline has been even halved w.r.t. the repeat cycle of a single satellite, since the
master and slave SAR images have been acquired by the two satellites of the constellation so far in orbit, flying
in interferometric configuration. All the interferograms generated in C and X band cover a quarter of the full
frame. In L band, instead, the entire full frame has been considered. A coherence estimator window of 11 × 11
pixels has been used.

All tests have been performed through use of the DEM-assisted technique developed at TU-Delft3 and included
in the DORIS open source SAR interferometric processing tool.5 For all the test sites, DTED-2 DEMs provided
by the Shuttle Radar Topography Mapping (SRTM) mission, with 3” posting in latitude and longitude, have been
used for estimating the warp function with the DEM-assisted coregistration approach. In Fig. 4, coherence maps
obtained by standard and geometric coregistration approaches are compared. In Fig. 5, further comparisons are
made through scatter plots and histograms.
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4.2 Results

As expected from the simulations described in Sec. 3, in X band, smooth warp functions such as 2-D polynomials
of low degree cannot ensure a sub-pixel coregistration accuracy. The peak of the Ol Doinyo Lengai volcano in
Tanzania, for example, is clearly visible in the DEM-Assisted coherence map, but absolutely dark (i.e., very
low coherence) in the case of the TerraSAR-X InSAR pair coregistered in the standard way. It is interesting
to note that improvements in coregistration involve also the Kerimasi volcano, more to the north (Fig. 4), as
can be noticed by the increased coherence on its slopes, indicated by the white arrow. Nevertheless, around
the Kerimasi crater, the differences between the two methodologies are not substantial. The volcano is very
vegetated, so temporal and volumetric decorrelation heavily affect our capability to discriminate the difference
(γ̃processing − γ̂processing), as suggested by eq. (25). In case of the COSMO/SkyMed interferogram (Test Site:
Umbria), the widespread improvements obtained with the DEM-assisted coregistration may be explained in
terms of the normal baseline, the highest among the X-band interferograms, even though the topographic range
over the entire scene is less than half of the corresponding value for the TerraSAR-X test site (see tab. 1). We
have also to take into account the reliability of the offsets initially estimated for a number of patches over the
master and slave images in the standard coregistration approach, as we will discuss briefly in the last section.
Obviously, standard coregistration in X band is still acceptable in case of limited normal baselines and gentle
slopes, as is the case for the other COSMO/SkyMed test site (Rome, Fig. 4).

ERS coherence maps, on the other hand, do not show any significant improvement, as already assessed in
Ref. 3. This does not mean that improvements are totally absent. Again, a reliable DEM-assisted coregistration
assessment can be done, provided the other decorrelation factors are negligible. Coregistration improvements
due to a DEM-assisted approach are significant at high normal baselines, where the geometric decorrelation is
predominant, because of the very low critical baseline (only ∼ 1.1 km for ERS). On the other hand, by processing
interferograms with low normal baselines, we reduce the geometric decorrelation but, in this case, also a smooth
polynomial is acceptable as warp function.

In spite of the lower carrier frequency of ALOS PALSAR w.r.t. ERS, the doubled chirp bandwidth ensures
higher range resolution and posting. Furthermore, thanks to a critical baseline of ∼ 15 km, geometric decorrela-
tion is still very low with normal baselines of a few kilometers. Also the temporal decorrelation,9 as well as the
volumetric one are much more reduced than in C and X bands, because of the higher wavelength. Therefore,
even with a 3-times coarser ground range resolution than in X band (tab. 1), quite significant improvements in
the interferometric coherence may be appreciated (see Fig. 4).

5. CONCLUSIONS

An assessment of the performances of a geometrical DEM-assisted coregistration with respect to more traditional
approaches (warp functions modeled as 2-D polynomials) has been carried out in this study. In particular, the
impact of range sampling rate, topographic range over the covered swath, and DEM errors, on the final coregis-
tration precision has been evaluated for different radar postings and relative positions of satellites, through both
analytical relationships and simulations. The two coregistration approaches have been compared by processing
real data in C, L and X band, using the interferometric coherence as quality figure. In X band, considerable im-
provements have been found by coregistering the images through the DEM-assisted approach, even with DTED-2
Digital Elevation Models, as those provided by the NASA SRTM mission. Improvements are noticed also in L
band (ALOS), while in C band (ERS) are not so evident. As processing decorrelation has to be minimized even
in case the other sources of decorrelation are negligible, DEM-assisted coregistration is, therefore, recommended,
especially in case of long normal baselines and rough topography. In particular, for X band interferometry,
this approach is absolutely to be preferred than the standard one. Furthermore, the DEM-assisted technique,
developed at TU Delft and included in DORIS, is also capable to estimate and correct for the timing errors
between master and slave.3 Finally, it is important to notice that, in the standard approach, the smoothness of
the polynomial warp function is not the only cause of misregistration, since the quality of coregistration depends,
in this case, also on the amount and distribution of the windows to find the offsets. Indeed, a poor global quality
of the coregistration model may be also due to a wrong preliminary tie-point matching between master and
slave. This is e.g. the case of the COSMO/SkyMed interferogram in Umbria, where the focused images are not
radiometrically equalized (SCS U imagery).
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Table 1. Processed stripmap SLC datasets. Test Sites: [1] Mt.Vesuvio, Italy (ERS-2); [2] Daunia, Italy (ALOS); [3] Ol
Doinyo Lengai, Tanzania (TerraSAR-X, c©Infoterra); [4] Umbria, Italy (CSK-S1&2 - pol.VV); [5] Rome, Italy (CSK-S1
- pol.HH). Notation: Bt ≡ temporal baseline, B⊥ ≡ normal baseline, B⊥,c ≡ critical baseline, Φ ≡ master scene center
longitude, Λ ≡ master scene center latitude, HM ≡ master satellite height , ∆HG ≡ topographic range over the entire
processed scene, θinc ≡ incidence angle, Rgr ≡ ground range resolution, Raz ≡ azimuth resolution, A/D ≡ Asc./Desc.

# Sensor
MASTER Date SLAVE Date

A/D Bt |B⊥| Φ Λ HM ∆HG
[dd.mm.yy]/Orbit [dd.mm.yy]/Orbit

1 ERS-2 25.11.95/3125 30.12.95/3626 D 35 ∼ 860 m 40.951◦N 14.756◦E ∼ 789 km ∼ 1600 m

2 PSR 10.01.07/5132 25.02.07/5803 A 46 ∼ 1860 m 41.589◦N 14.839◦E ∼ 700 km ∼ 1600 m

3 TSX 05.05.08/4942 16.05.08/5109 A 11 ∼ 315 m 2.779◦S 3.594◦E ∼ 512 km ∼ 2130 m

4 CSK 04.04.08/1735 [S2] 12.04.08/4579 [S1] A 8 ∼ 800 m 42.945◦N 12.051◦E ∼ 628 km ∼ 900 m

5 CSK 22.09.07/1572 [S1] 08.10.07/1809 [S1] A 16 ∼ 430 m 41.932◦N 12.461◦E ∼ 628 km ∼ 150 m

# Sensor Frequency Band Pol. Chirp BW θinc (beam ID) B⊥,c Rgr Raz Swath

1 ERS-2 C (5.3 GHz) VV 15.55 MHz ∼ 23.2◦ ∼ 1.10 km ∼ 24.5 m ∼ 5.0 m ∼ 100 km

2 PSR L (1.27 GHz) HH 28 MHz ∼ 38.7◦ (#8) ∼ 15.38 km ∼ 8.6 m ∼ 5.0 m ∼ 70 km

3 TSX X (9.65 GHz) HH 150 MHz ∼ 26.3◦ (#5) ∼ 4.33 km ≤ 3.0 m ≤ 3.0 m ∼ 30 km

4 CSK X (9.60 GHz) VV 85 MHz ∼ 41.4◦ (H4-10) ∼ 6.32 km ≤ 3.0 m ≤ 3.0 m ∼ 40 km

5 CSK X (9.60 GHz) HH 102 MHz ∼ 34.0◦ (H4-05) ∼ 5.33 km ≤ 3.0 m ≤ 3.0 m ∼ 40 km
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Figure 1. SAR interferometric geometry. (A) The elliptic cross section (dashed red line) between the reference ellipsoid
(WGS84) and the zero-Doppler plane π is approximated with a circle (solid red line) centered in Õ, the curvature center
of the ellipse w.r.t. the nadir projection P nad

M of the master satellite position. The position of the slave satellite is provided
in terms of the distance B (or baseline) and the baseline orientation angle α, measured from the master nadir-direction
towards the its looking direction. In (B), instead, the elliptic cross section is approximated with a circle (solid red line)
centered in Cmr, i.e. the curvature center of the ellipse w.r.t. the nadir projection of the point Gmr, located at mid-range.

[A] [B]

Figure 2. (A) 3D view of the SAR acquisition mode (stripmap mode). For a given azimuth time, the scene imaged by
the radar along the line of sight (LOS) belongs to the zero-Doppler plane π (in pale-blue). Because of the side-looking
acquisition mode of SAR sensors and the assumption of zero-Doppler (deskewed) stripmap imaging geometry, the azimuth
angle of the cross section π is equal to (αh + π/2) (in case of right looking), with αh heading of the orbit. (B) 2D view of
the cross section π. Õ and Cmr are the curvature centers in the nadir projections, P nad

M and P nad
mr , of the master satellite

position and the ground point at middle range, respectively. In practice, Õ will be always located between points 1 (i.e.,
center of curvature of the prime vertical in P nad

M ) and 2, depending on the particular azimuth angle of the section π.
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Figure 3. [A] Polar Diagrams of the absolute normal baselines |B⊥| at mid-range for different master-slave configurations,
obtained by varying the baseline orientation angle α from 0 to 360 degrees (constant distance B = 1km between master
and slave). [B] Polar diagrams of the offset residuals estimated for polynomial warp functions with degrees 2 (solid line)
and 3 (dashed line), corresponding to each pair ({α, |B⊥|}) in [A] (the topographic range ∆HG is assumed to be equal to
1 km). [C] Plots of the offset residuals due to inaccurate knowledge of the topographic profile, by assuming the vertical
accuracy of SRTM DEMs. All simulated offsets in [B] and [C] have been derived w.r.t. look angles of the real data
processed in Sec. 4 (table 1). [D] Ratio between the offset residuals due to the smoothness of the polynomial function
and the corresponding residuals due to DEM errors. Since for each pair ({α, |B⊥|}) this ratio is much higher than 1,
performances of the DEM-A coregistration are always better than the standard approach.
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Figure 4. Comparisons between standard (2-D polynomial warp function) and DEM-assisted coregistration (see Tab. 1
for processed data sets parameters). [A] Coherence maps obtained with standard coregistration. [B] Coherence maps
obtained with DEM-Assisted coregistration. [C] Coherence improvement of the geometric over the standard approach.
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Figure 5. [A] Scatter plots of coherence values obtained using polynomial based coregistration (degree 2) vs. the DEM
assisted ones, for all bands and test sites (see Tab. 1). [B] Histograms of the differences |γdem| − |γpol| between coherence
values obtained with the two coregistration approaches. The vertical red line shows the mean value of the differences.
[C] In blue are plotted the histograms of the coherence values obtained with the DEM-A approach, for all pixels where
|γdem| ≥ |γpol| + γth. The threshold γth has been chosen equal to 0.01, in order to take into account the coherence
estimation noise. In red are plotted, instead, the histograms of the coherence values obtained with the standard approach,
for pixels where |γpol| ≥ |γdem|+ γth. Since the numbers of pixels where |γdem| ≥ |γpol|+ γth and |γpol| ≥ |γdem|+ γth are
not equal, in general, red and blue histograms have different areas. Bigger is the area of the “blue” histogram w.r.t. the
red one, better are the performances of the DEM-A coregistration w.r.t. the standard approach.
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