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Abstract

Image alignment is a crucial step in SAR Interferometry. Interferogram formation requires images to be

coregistered with an accuracy of better than a few tenths of a resolution cell to avoid significant loss of phase

coherence. In conventional interferometric precise coregistration methods for full-resolution SAR data, a two-

dimensional polynomial of a low degree is usually chosen as warp function and the polynomial parameters are

estimated through least squares fit from the shifts measured on image windows. In case of rough topography or long

baselines, the polynomial approximation may become inaccurate, leading to local misregistrations. These effects

increase with the spatial resolution of the sensor. An improved, elevation-assisted image coregistration procedure

can be adopted to provide better prediction of the offset vectors. This approach computes pixel by pixel the

correspondence between master and slave acquisitions by using the orbital data and a reference digital elevation

model (DEM). The present study aims to assess the performance of this procedure with respect to the “standard” one

based on polynomial approximation. Analytical relationships and simulations are used to evaluate the improvement

of the DEM-assisted procedure with respect to the polynomial approximation, as well as the impact of the finite

vertical accuracy of the DEM on the final coregistration precision for different resolutions and baselines. The

two approaches are then evaluated experimentally by processing high-resolution SAR data provided by COSMO-

SkyMed and TerraSAR-X missions, acquired over mountainous areas in Italy and Tanzania, respectively. Residual

range pixel offsets and interferometric coherence are used as quality figure.
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I. INTRODUCTION

Synthetic Aperture Radar Interferometry (InSAR) is the study of coherent combinations of SAR images

taken from slightly different observation directions. Precise (sub-pixel) image alignment is then required as

first processing step [1]. High-accuracy image coregistration is a requirement common to many other fields

of remote sensing [2], and even to other applications of signal processing such as medical imaging [3],

where multi-image datasets are used to detect subtle temporal or geometric changes in objects or scenes.

For a general review of image registration techniques see [4] and references therein. Precise co-registration

of SAR images is a non-trivial task, since a change in radar acquisition geometry generates image shifts

which in principle depend on the topography [5]. Many methods have been developed to deal with the

problem. One of the most used approach relies on the fact that SAR images suitable for interferometry are

separated by relatively small geometric baselines (compared e.g. to radargrammetric processing [5]). In this

case, when topographic variations are not too strong, the change in acquisition geometry from one image

to the other can be approximated by a low-order polynomial transformation. The polynomial coefficients

are usually estimated by least squares fitting of a series of image pixel offset values, measured on several

image patches distributed across the scene. Such offsets are in turn estimated by locally maximizing a

merit figure, such as the data cross-correlation.

Minimizing coherence losses to improve coregistration performances is a long-term goal in InSAR

research. In [6], a model for the co-registration quality as a function of spatial, temporal and Doppler

baselines is used as a score function to decide, through application of a minimum spanning tree structure,

which images should be connected in small-baseline pairs; this allows to minimize baseline decorrelation

effects, optimizing image-to-image coregistration performances and providing the processing sequence to

finally obtain the coregistration parameters of image pairs separated by long baselines.

Alternative accurate coregistration methods available when dealing with critical interferometric condi-

tions consist e.g. in exploiting contrasted image features or ideal point scatterers [7], [8]. Other efficient

methods exploit spectral target diversity [9], [10]. They result hardly applicable to satellite data character-

ized by small relative signal bandwidths (ERS, ENVISAT, ALOS), but are beginning to become feasible

for applications to the new generation of X-band sensors (TerraSAR-X, COSMO-SkyMed).

In the present study we deal with a novel processing procedure which provides topography-based

prediction of the pixel offset vectors. Instead of estimating the shifts on a limited number of patches and

then using a polynomial approximation for the transformation, this approach computes pixel by pixel the
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correspondence between master and slave by using the orbital data and a reference DEM. In fact, as shown

in the following, the effectiveness of the polynomial approximation depends on the topography variation

over the scene, on the length of the interferometric baseline, and on the spatial resolution of the imagery.

Thus, for applications involving areas of rough topography and/or long baselines, and especially for the

new high-resolution SAR satellites, the improvement given by correctly modeling topography-based image

pixel offsets is considerable.

Various groups reported experiences with DEM-based InSAR coregistration approaches [11], [12], [13],

detecting some improvement w.r.t. more conventional methods, although to date such assessments have

been rather empirical. In this study we aim to assess the performance of the DEM-assisted coregistration

approach with respect to the conventional procedure based on cross-correlations and the approximated

polynomial warp function. To do this, we develop a geometrical model allowing to express analytically

the shifts between a master and a slave SAR image for a given acquisition geometry, and for any image

pixel. This analytical model allows to treat in a straightforward manner the error budgets associated with

the two approaches, in particular the limited accuracy due to the polynomial approximation and the error

due to the finite DEM precision. The theoretical performances of both approaches can be thus compared

for several typical satellite configurations. The analytical considerations are then validated by showing

results of coregistrations operated on X-band SAR acquisitions of both COSMO-SkyMed (CSK) and

TerraSAR-X (TSX) missions, since high resolution data are the most sensitive to misregistrations due to

smooth warp functions.

Results are evaluated by comparing the residual pixel offsets as well as through the merit figure

constituted by the interferometric coherence.

Real data coregistration has been carried out by applying the DEM-assisted technique developed at

TU Delft [12] and recently implemented as part of the DORIS open-source SAR interferometric processing

tool [14].

The paper is organized as follows. In Sec. II the geometrical model is described and the analytical

formulation of the relative shifts between two images are computed as a function of the mission parameters.

Section III describes the expected performance results of the DEM-assisted approach by simulating

different acquisition configurations. In particular, the theoretical coregistration error due to the polynomial

approximation is evaluated, as well as the effect of DEM errors on the final coregistration precision of

the DEM-assisted approach. In Sec. IV the conventional coregistration procedure and the DEM-assisted
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coregistration procedure are compared by processing CSK and TSX data. Comments and conclusions are

provided in Sec. V.

II. ANALYTICAL FORMULATION

As mentioned in the preceding section, the relative disalignment between two SAR images acquired from

two different orbits separated by a baseline B depends in general on the local topographic elevation [5].

Operationally, this disalignment can be computed pixel by pixel through knowledge of the terrain elevation

and precise orbital satellite positions. Orbit and elevation data are usually given in a reference frame in

which the Earth is modeled as an ellipsoid (e.g. WGS84). In [12] and other works [15] the performances

of the DEM-assisted method with respect to conventional correlation-based coregistration is illustrated

through application to test sites characterized by different locations and topography. Here, we introduce

a geometric model to calculate the range shifts between master and slave images as a function of the 3D

position of any given point on the Earth surface.

Using an ellipsoidal model for the Earth to compute the image shifts gives rise to equations which cannot

be easily treated analytically. Nevertheless, as shown in the following, spherical models can be used as

a good local approximation of the ellipsoidal surface, with negligible errors as long as the evaluation

remains limited to the sensor swath extension. Using a spherical model greatly simplifies equations for

the image shifts to be estimated by the coregistration step. In this section we introduce an approximated

spherical model (Fig. 1), which is further refined in Appendix A, to derive the shift expressions in the

assumption of zero-Doppler side-looking geometry.

[Fig. 1 about here.]

All geometric parameters involved in the following discussion have to be computed in an Earth Centered

Earth Fixed (ECEF) reference system Oxyz (see Fig. 2), thus intrinsically taking into account the effect

of the Earth’s rotation. First of all, once the master slow time instant is fixed, an initial choice for the

radius ρ of the spherical model is the Earth curvature radius Raz of the nadir projection of the master

satellite position on the reference ellipsoid, having geodetic coordinates ΦM and ΛM (Fig. 2).

[Fig. 2 about here.]

The azimuth orientation angle of the intersection of the zero-Doppler plane (indicated as π-plane in the

following) with the Earth ellipsoid is therefore equal to αh +π/2 (in case of right-looking sensor), where
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αh is the inclination, or heading, of the orbit (measured clockwise from the north direction, see Fig. 2).

The Earth curvature Raz corresponding to the section π is defined through Euler’s theorem [16]:

1

Raz
=

cos2
(
αh + π

2

)

M
+

sin2
(
αh + π

2

)

N
, (1)

where M and N are the curvature radii of the meridian and the prime vertical, respectively, for the specific

point P nad
M (ΦM , ΛM) considered (Meusnier’s theorem [17]):

M =
a (1− e2)

3
√

1− e2 sin2 ΦM

,

N =
a√

1− e2 sin2 ΦM

(2)

and a, b and e are the semi-axes and the first eccentricity of the reference ellipsoid, respectively.

In other words, for each master slow time instant, the cross section between the corresponding zero-

Doppler plane π and the reference ellipsoid is an ellipse that we are approximating, nearby the projection

P nad
M , by a circle of radius ρ = Raz, centered on the curvature center Õ of the ellipse w.r.t. P nad

M . For every

point along the ground swath, the difference between the heights above the spherical approximation just

defined, HG, and the reference ellipsoid, hG, is assumed negligible (Fig. 1). The limits of this assumption

are discussed in Appendix A.

In the zero-Doppler plane π, we then define a new reference system Õx̃z̃ (see Fig. 2), with the z̃ axis

coincident with the zenithal direction of the master satellite position, and the x̃ axis normal to the first

one, directed towards the looking direction of the radar. The coordinates of the origin Õ of this new

reference frame in the Oxyz reference system are:



xÕ

yÕ

zÕ




=




rxx̃ rxỹ rxz̃

ryx̃ ryỹ ryz̃

rzx̃ rzỹ rzz̃







0

0

N −Raz




+




0

0

− tanΦM(a2−b2)√
a2+b2 tan2 ΦM




,

(3)
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where the matrix of coefficients rij̃ is given by:




rxx̃ rxỹ rxz̃

ryx̃ ryỹ ryz̃

rzx̃ rzỹ rzz̃




=




sin ΛM cos ΛM 0

− cos ΛM sin ΛM 0

0 0 1




×




1 0 0

0 sin ΦM cos ΦM

0 − cos ΦM sin ΦM




×




− cos αh − sin αh 0

sin αh − cos αh 0

0 0 1




.

(4)

Using this geometric model, assuming precise orbits and a Digital Elevation Model (DEM), radarcoded

in master geometry, are available, it is possible to retrieve analytically the pixel offset between master

and slave along the slant range direction at each specific master slow time instant, as described further

on. For avoiding nonessential complications in the following equations, orbits are assumed to be parallel

and SAR images are registered in zero-Doppler geometry when focused.

Our aim is to estimate, for each master pixel number pM , the corresponding slave pixel position number

pS and so the relative offset in range ∆p = pS−pM . Actually, we are interested in evaluating the influence

of the baseline (in particular its normal component) on the range pixel offsets. Therefore, a description

of the slave satellite position in terms of relative position w.r.t. the master satellite is preferable. With B

we indicate the distance (baseline) between master and slave, while α is the off-nadir baseline orientation

angle, measured towards the SAR looking direction. The slave height HS is related to the master height

HM , baseline and baseline orientation angle by the following relation:

ρ + HS =
√

(ρ + HM)2 + B2 − 2B (ρ + HM) cos α. (5)

For a given pixel number pσ (where pσ = 0, . . . , Npσ−1 and σ ∈ {M, S}, with M = Master, S = Slave),

master and slave slant range distances Rσ,G are related to the corresponding 2-way zero-Doppler range
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times τpσ (or fast times) through:

τpσ = τσ0 +
pσ

fs

Rσ,G =
c

2
τpσ =

c

2

(
τσ0 +

pσ

fs

)
,

(6)

where c is the speed of light, fs the range sampling rate and τσ0 (σ ∈ {M, S}) are the 2-way zero-Doppler

range times for the first range pixels. Pixel offsets between master and slave along range direction are

hence given by:

∆p = pS − pM =

= fs

(
2
RS,G

c
− τS0

)
− pM =

= fs

[
2

c
(RS,G −RM,G) + (τM0 − τS0)

]
.

(7)

For each master pixel pM , the main problem is finally the estimation of the distance RS,G between the

slave satellite and the ground point G, whose height above the spherical model and distance from the

master satellite are equal to HG and RM,G, respectively. This can be accomplished by observing that

(Fig. 1):

sin δM,S

B
=

sin α

ρ + HS

sin δM,G

RM,G

=
sin θM,G

ρ + HG

sin(δM,G − δM,S)

RS,G

=
sin θS,G

ρ + HG

cos2 θσ,G =
(ρ + Hσ)2 + R2

σ,G − (ρ + HG)2

2Rσ,G(ρ + Hσ)
,

(8)

where δσ,G and θσ,G are the look angles of the ground point G from, respectively, the curvature center

Õ and the satellites positions (Fig. 1). For each master pixel pM , RM,G is expressed by eq. (6) and RS,G

can be estimated numerically by combining eqs. (8) into:

arcsin

[
RM,G

ρ+HG

√
1− (ρ+HM )2+R2

M,G−(ρ+HG)2

2RM,G(ρ+HM )

]

− arcsin

[
RS,G

ρ+HG

√
1− (ρ+HS)2+R2

S,G−(ρ+HG)2

2RS,G(ρ+HS)

]

= arcsin B sin α
ρ+HS

,

(9)

and solving for RS,G.
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In summary, the pixel offset between master and slave can be expressed, through eqs. (7)–(9), as the

product of the range sampling rate and a function of the normal and parallel baselines, as well as the

topographic height HG above the spherical model adopted (by assumption, very close to the height hG

above the reference ellipsoid).

As a final comment, it can be proved that the above model reduces to well-known expressions in the

limiting cases of prevailingly parallel or perpendicular baselines. To show this, we write the expressions

of the parallel and perpendicular components of the baseline as a function of the look angle θM,G:

B⊥ = B sin(α− θM,G),

B‖ = B cos(α− θM,G),

B sin α = B⊥ cos θM,G + B‖ sin θM,G,

B cos α = B‖ cos θM,G −B⊥ sin θM,G.

(10)

Then, in the limiting cases |B‖| ¿ |B⊥| ≈ B or |B⊥| ¿ |B‖| ≈ B, eq. (9) can be simplified as follows:

RS,G ≈





RM,G −B‖ if |B‖| À |B⊥|,
√

R2
M,G + B2

⊥ if |B‖| ¿ |B⊥|.
(11)

III. PERFORMANCE EVALUATION

Having set up the geometrical model through eqs. (7)-(9), possibly refined through the substitutions

in (A.3)-(A.4), we can apply analytical error propagation methods to infer the effects of parameter

accuracy. Having postulated perfect knowledge of orbit geometry, the only difference between the tradi-

tional polynomial-based and the DEM-assisted coregistration procedures are related to the warp function

smoothness, and the DEM height accuracy, respectively. In this section we analyze these two contributions.

A. Effects of the warp function smoothness

The analytical formulation described in the previous section allows to estimate the actual offset in pixels

along slant range, ∆p = pS − pM , between master and slave images, at any slow time instant. Therefore,

the effectiveness of any kind of warp function in terms of its capability to fit the true geometric distortions

can be analyzed w.r.t. any terrain profile. Then, we can investigate the effect of warp functions ∆p̃pol

described by polynomials of a certain degree n, whose coefficients Ak are estimated in order to best fit
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(least squares approach) the actual offsets ∆p, estimated on the data, from near to far range:

∆p ≈ ∆p̃pol =
n∑

k=0

Akp
k
M . (12)

In particular, we are interested in evaluating the impact of coregistration errors (εp
pol = ∆p̃pol − ∆p)

on the interferometric phase whose coherence is related to misregistration in terms of resolution cells

(δr). Our formulation, according to the usual processing outputs, refers to pixels which are related to the

sampling frequency fs. Although in general fs can be arbitrary, provided that Nyquist criterion is met,

for SAR data this parameter is strongly related to the range bandwidth Br: fs = k · Br, with k close to

1 (e.g. k = 1.22 for ESA ERS, k = 1.14 for ALOS PALSAR, k = 1.10 for TSX). In the following we

assume to deal with SAR images sampled by the nominal frequency rate. Thus, results on misregistration

evaluated in pixels can be easily interpreted in terms of resolution cells: (εp
pol = k · εδr

pol).

Actually, the fit is also poor for very regular terrain profiles, in case of high normal baselines and strong

differences between the maximum and the minimum topographic height over the scene, ∆HG. This can

be shown by modeling for example the terrain profile over the entire swath as a raised cosine, centered

at mid-range and with spatial period equal to the swath width. Results are summarized in Figs. 3a-b

for SAR sensors with different carrier frequencies, spatial resolutions, range sampling rates and swath

widths, hypothesizing a topographic range ∆HG of 1 km, over the entire swath, and polynomial degrees

n ∈ {2, 3}. In particular, simulation tests have been carried out for C-band sensors such as ESA ERS

and ENVISAT missions, for L-band such as the JAXA ALOS mission, and for the two X-band missions

TSX and CSK. A first simulation consists in fixing the baseline B (1 km in Fig. 3) and varying the

baseline orientation angle α from 0 to 360 degrees. Hence, maximum misregistrations may be derived

for the entire range of normal baselines |B⊥| from 0 to B. So, for any baseline orientation angle, normal

baseline and pixel offset residual values can be derived from the polar diagrams in Fig. 3a and -b. The

plots show that pixel offset residuals increase with the normal baseline |B⊥|, the height range ∆HG over

the scene, and the chirp bandwidth.

Because of the multi-beam capability of all SAR sensors, except for ERS-1/2 missions, a choice has

been done for the off-nadir angle. For ENVISAT data, IS2 swath is selected, since it is the default stripmap

acquisition mode for this sensor and compatible with the ERS side-looking geometry. According to the

actual JAXA acquisition policy, strip #07 has been selected since it is the Fine Beam Single Polarization

(FBS) default mode (off-nadir angle: 34.3 deg). Finally, for X-band missions there is not a default beam
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in stripmap mode. In this case, it has been chosen the side-looking geometry of the processed TSX data

(see Sec. IV-A). Diagrams in Fig. 3a and -b confirm that a DEM-assisted approach is highly preferable for

a proper coregistration of X-band SAR images, even in case of moderate values for |B⊥| and ∆HG, since

offset residuals cannot be reduced under 1/8 resolution cell without recurring to polynomials of degree

much higher than 3, which increases significantly the computational load. Moreover, even if a higher degree

can most likely reduce the residuals, it leads in general to unstable solutions, because of the excessive

number of coefficients to be estimated. Misregistrations of more than 1/8 resolution cell never occur,

instead, for ERS images, with a third degree polynomial and a topographic range of 1 km, even with normal

baselines near to the critical value. Nevertheless, even for ERS images, the minimum required accuracy for

a proper coregistration could be hardly achievable with higher topographic ranges and/or a second degree

polynomial. Anyway, substantial improvements in the coregistration of ERS images are not easy to detect

through the interferometric coherence, since they are counterbalanced by the geometrical decorrelation,

because of the small value, in absolute terms, of critical baseline (∼1.1 km for flat terrain). Polar diagrams

in Fig. 3a and -b reveal that, despite the doubled chirp bandwidth, the entity of misregistrations for a given

parameter triplet {|B⊥|, ∆HG, n} for PALSAR is comparable to the corresponding residuals for the ERS

satellite. This is explained in terms of the different side-looking geometry considered: PALSAR simulations

refer, indeed, to an incidence angle of ∼ 38.7 degrees, while the same angle is only ∼ 23.2 deg for ERS

data. However, polar diagrams refer to normal baselines not longer than 1 km, while PALSAR acquisition

pairs with normal baselines of up to a few kilometers are not unusual [18]. Even the coregistration of

ALOS interferograms should significantly improve when a DEM-assisted approach is adopted. Thanks

to the longer wavelength w.r.t. C- and X- band, the ALOS critical baseline is about ∼15 km. This in

turn leads to effective improvements in the measured interferometric coherence since the geometrical

decorrelation could be considered quite negligible even with long baselines.

The simulation tests so far described may be further extended and repeated by varying also the height range

over the imaged scene. In Fig. 4, the maximum misregistrations thus estimated for both the alignment

approaches are displayed for a wide range of normal baselines (0÷1 km) and topographic levels (0÷3 km).

Results confirm that even for ERS/ENVISAT interferometry, DEM-assisted coregistration may provide

better accuracy when the swath covers mountainous areas with topographic ranges higher than 1÷2 km.

The mentioned diagrams may be useful as a quick-and-dirty estimator when deciding whether or not the

DEM-assisted approach (whose computational cost is much higher than the conventional one) is necessary
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for a proper image alignment.

B. DEM error analysis

The height information in the radarcoded DEM is affected by errors mainly due to the intrinsic finite

vertical accuracy of the DEM, and, to a lesser degree, to the accuracy of the radarcoding procedure. For

instance, the Shuttle Radar Topography Mission (SRTM) provided DTED-2 DEMs, with a posting of

90×90 meters (outside USA) and 15 m absolute height accuracy for most of the Earth’s surface; as we

will see, such accuracy is sufficient for our registration purposes. In this section we estimate the entity

of pixel offset residuals for a given height error. As done in the previous section, let us indicate with

pS the slave pixel number corresponding to a generic master pixel number pM , estimated theoretically

under the analytical formulation introduced above, and assuming to know exactly the height of each

pixel. The relative pixel offset, ∆p = pS − pM , can be determined through eq. (5), once the slant range

distance between the slave satellite position and the ground point G, RS,G, has been estimated. Since

DEM errors δHG (setting H̃G = HG + δHG) affect the slave slant range estimation, R̃S,G, erroneous

values are estimated for the slave pixel number, p̃S , w.r.t. the same master pixel number pM , and so for

the estimated offset, ∆p̃DEM = p̃S − pM , leading to misregistrations:

pS = 2
fs

c
RS,G − fs τS0, p̃S = 2

fs

c
R̃S,G − fs τS0

The entity of the misregistration, (∆p̃DEM −∆p), is therefore equal to:

(∆p̃DEM −∆p) = p̃S − pS = 2
fs

c
(R̃S,G −RS,G). (13)

Assuming moderate height errors, a linear approximation becomes acceptable:

R̃S,G ' RS,G +
∂RS,G

∂HG

δHG

(∆p̃DEM −∆p) ' 2
fs

c

∂RS,G

∂HG

δHG,

(14)

According to the geometrical model described in Sec. II, the following equation for the slave slant range

variation w.r.t. the topographic height can be derived:

∂RS,G

∂HG

=
1

RS,G

[(HG + ρ)− (HS + ρ) ξ] , (15)
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where

ξ = cos (δM,G − δM,S)

· [1− tan δM,G tan(δM,G − δM,S)

ζ(HG, HM , ρ, RM,G)] ,

(16)

with

ζ(HG, HM , ρ, RM,G) =

(HG + ρ)2 −
[
(HM + ρ)2 −R2

M,G

]

(HG + ρ)2 − [(HM + ρ) + RM,G]2

·
(HG + ρ)2 +

[
(HM + ρ)2 −R2

M,G

]

(HG + ρ)2 − [(HM + ρ)−RM,G]2
.

(17)

This formulation is extendable to the more accurate geometrical model described in Appendix A, by

applying the substitutions in (A.3). Moreover, by varying the baseline orientation angle α from 0 to 360

degrees, the influence of DEM errors on the coregistration accuracy may be derived for a range of normal

baselines. Fig. 3c illustrates the misregistration trends due to DEM errors in C, L and X band, w.r.t.

the NASA SRTM DEM vertical accuracy and by varying the baseline orientation angle α for a constant

topographic height range ∆HG of 1 km. It can be shown that the influence of HG in eqs. (13)–(16) is

very weak. Therefore, a simplified but well-approximated expression for the factor ζ(HG, HM , ρ, RM,G)

can be retrieved by imposing HG = 0.

In fig. 3d the ratio (∆p̃pol − ∆p)/(∆p̃DEM − ∆p) is plotted for the three bands. Differences among

ERS, ALOS, and TerraSAR-X plots in Fig. 3d are mainly due to the different look angles, satellite

heights and covered swaths among the sensors. As shown in Fig. 3d, even with a third degree polynomial,

misregistrations due to DEM errors are more than ten times less than the pixel offset residuals due to the

polynomial smoothness. In case of rough topography, we suggest, therefore, a DEM-assisted approach as

the preferred method for coregistration of high resolution images (X-band), as well as for coarser resolution

images (L- and C-band). The vertical accuracy of NASA SRTM DEMs can therefore be considered

acceptable for a successful DEM-assisted coregistration, still in case of high-resolution SAR images. It

should be noticed that the referred vertical accuracy of NASA SRTM DEMs has to be considered as

an optimistic estimate, since it refers to a ground resolution much coarser than that of the SAR sensor,

even for ERS images (i.e., the SAR images with the worst resolution, compared to the other L- or X-
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band SAR sensors investigated). DEM errors may be therefore much higher in practice, still discarding

those introduced by an erroneous DEM radarcoding, by themselves not quite negligible. This means

that, especially for ERS images (where misregistrations due to smooth warp functions are the weakest

among the SAR sensors considered in the present work, because of the lower range sampling rate), the

improvements introduced by the DEM-assisted coregistration may be less significant in practice.

[Fig. 3 about here.]

[Fig. 4 about here.]

IV. REAL DATA PROCESSING

Recently [19], a first assessment of the potentials of DEM-assisted approach has been carried out by

processing real data in C, L and X band. In this section we illustrate more in detail the findings highlighted

in the previous section through examples of coregistration of X-band real data, the most affected by local

misregistrations, even in case of moderate values for normal baseline and height range, in case of warp

functions modeled by polynomials of lower degree.

A. Data sets description

Two different test sites have been selected with the purpose to assess the potentials of the DEM-

assisted procedure developed at TU Delft and presently available in the DORIS software [14]. The first

one is located in Abruzzo Region, Italy (Fig. 5), thanks to the availability of five CSK stripmap pairs

(Tab. I) acquired in tandem-like configuration, thus all spanning just one day. This ensures low temporal

decorrelation, thus allowing the interferometric coherence to be selected as merit figure. Their different

normal baselines allow a deeper investigation on the entity of misregistrations in conventional alignment

methods when increasing B⊥. The second test site is located in Tanzania (Fig. 11), where a pair of TSX

stripmap acquisitions (Tab. I) cover the “Ol Doynio Lengai” volcano, in the Arusha region. The TSX

interferogram has a normal baseline higher than the five CSK ones (Tab. I). The temporal baseline is in

this case of 11 days, coincident with the TSX orbital repeat cycle. Radarcoded SRTM DEMs are shown

in Fig. 6 and 12, for both the test sites. The two test sites have completely different physical settings but

similar topographic range (∼ 2.1 km, Tab. I), thus allowing further cross-comparisons on the perfermances

of both coregistration approaches. Relevant parameters for the CSK and TSX datasets are listed in Tab. I.
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B. Methodology

For both the data sets and for all the interferograms in Tab. I, the assessment of the performances of

both the coregistration approaches is performed using two different merit figures, the pixel offset residuals

and the interferometric coherence.

Let us start with the offset residuals computation. First of all, for a high number (over 20K) of patches

(dimension: 128 pixels × 128 lines), pixel offsets between masters and slaves are estimated by maximizing

their cross-correlation and by discarding patches with a low correlation coefficient (less than 0.4). Second,

models for the warp functions that match any pixel of the slaves in the corresponding master geometry are

estimated through both conventional and DEM-assisted alignment approaches, as implemented in DORIS.

Finally, the residual pixel offsets along range directions between the fine offset estimates and the warp

models are computed. The processing steps involved in warp function estimation for both coregistration

approaches can be summarized as follows.

Polynomial warp function estimation. 2-D polynomials of low degree (i.e., 2 for our tests) along range

and azimuth are estimated through LMS fit over N estimated offset vectors whose correlation is higher

than the 0.4 threshold, together with corresponding w-test statistics estimated on the residual pixel offsets.

The procedure is repeated unless the w-test statistics along range and azimuth direction are both lower

than a given threshold (1.97 in our case). For each intermediate iteration, the offset vector with the highest

summed squared w-test statistic is considered outlier and then discarded. The 2-D polynomial estimation

is hence repeated on the subset of N−1 offset vectors, where the detected outlier has been removed. This

iterative procedure is repeated until the fit of the polynomial model with the remaining offset vectors is

acceptable, i.e. no outliers are detected. Note that an offset vector may be treated as an outlier not only if

it has been wrongly estimated, but even, in areas with strong topography, in the case the misregistrations

due to uncompensated heights exceeds the constraint of ±1/8 resolution cells required for a proper image

alignment.

DEM-assisted coregistration steps. Offset vectors are computed pixel by pixel, by geocoding the master

image and applying inverse geocoding procedures to go back in the slave reference geometry, through

use of orbital data and a reference digital elevation model (SRTM-derived). Hence, a first computation

of the residual pixel offsets is performed w.r.t. fine offsets estimated through cross-correlation between

master and slave. Residual offsets may still be not negligible, since values for the sampling frequency

along slant range and azimuth direction as well as the fast and slow times of the initial pixel and line,
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respectively, could be eventually annotated with an inadequate number of significant digits or affected by

errors. Hence, an additional LMS fit procedure could be necessary. A 2-D polynomial of first degree is in

general sufficient for modeling the mentioned residual offsets. The final warp function is therefore given

by the sum of the DEM-assisted model and the 2-D polynomial one, but further on we refer to it as to

the DEM-assisted model, for simplicity.

In the next section, pixel offset residuals are shown for all the estimated state vectors with a corre-

lation coefficient higher than 0.4. In order to better appreciate the entity of misregistrations in both the

coregistration approaches, detected outliers have not been discarded since, as mentioned before, in case

of smooth warp functions, the probability of false alarm in the outlier detection is not negligible.

Regarding the use of the interferometric coherence as merit figure, we recall that the complex coherence

γ is defined as [1]:

γ =
E[s1s

∗
2]√

E[s1s∗1]
√

E[s2s∗2]
(18)

where s1 and s2 are the two complex SAR signals. Assuming ergodicity, γ can be estimated as:

γ ≈ 〈s1s
∗
2 exp[−jφ]〉√
〈s1s∗1〉 〈s2s∗2〉

(19)

where the average operation is performed spatially, and φ is a phase component including effects of

topography, displacement, and any other deterministic phase contribution within the estimation window.

This spatial estimator is biased for small estimation windows [1]. A spatial dimension of 11× 11 pixels

is chosen in order to reduce this drawback. It can be shown [20] that γ can be factorized in terms of the

sources of decorrelation as follows:

γ = γt · γg · γDc · γvol · γthermal · γproc (20)

where subscripts t, g, Dc, vol, thermal and proc represent temporal, geometric, Doppler, volume, thermal

and processing decorrelation sources, respectively (see [1] for a detailed description of each contribution).

Misregistrations, as well as errors occurring during interpolation, translate in a loss of coherence, expressed

by the decorrelation contribution γproc. Therefore, the estimated coherence can be used to compare the

DEM-assisted coregistration potential w.r.t. the standard (polynomial) approach. However, this contribution

will be hardly discernible in case the other sources of decorrelation play an important role. Indeed, let us

indicate with γ̃ (resp., γ̂) the coherence map evaluated for the interferograms obtained by coregistering
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the images in the standard way (resp., through the DEM-assisted procedure). The difference between the

coherence maps estimated with the two methodologies is therefore given by:

γ̃ − γ̂ = γt · γg · γDc · γvol · γthermal

· (γ̃proc − γ̂proc)

= Γ · (γ̃proc − γ̂proc)

(21)

Our goal is to measure the quantity (γ̃proc − γ̂proc), but this is actually weighted by Γ. A comparison

between DEM-assisted and standard coregistration approaches will be more feasible as Γ is close to 1.

Therefore, only interferograms with the lowest temporal baseline have been generated (1 day for CSK-

tandem, 11 days for TSX), in order to minimize the temporal decorrelation, as shown in the next section.

Moreover, very low coherent areas (i.e., where coherence is less than γth = 0.1) have been masked out,

when comparing the two alignment approaches. The only drawback of this approach lies on the capability

to investigate areas where at least one of the two methods is effective, since areas characterized by strong

mis-registration are masked out.

C. Results

The CSK dataset in Abruzzo consists of five interferometric pairs with normal baselines from few tens

of meters up to 287 m (interferograms #1 ÷ #5 in Tab. I). Range pixel offset residuals (Fig. 7, at the

bottom) confirm the good performances of the DEM-assisted approach, since they are confined to a few

tenths of pixels regardless of the normal baseline. The standard approach may be considered acceptable

only for very low normal baselines, as shown at the top of Fig. 7. In fact, a correlation between the entity

of misregistrations and the normal baseline can be noticed, as expected.

According to simulation results (Fig. 4), with a topographic range of around 2 km (as it is for the

selected test site), residual offsets overcome 1/8 resolution cell with normal baselines higher than 100 m.

This is confirmed by the histograms of the range residual offsets at the top of Fig. 8, relative to the standard

approach: the higher the normal baseline, the higher the percentage of residual offsets worse than a few

tenths of pixel. Their spread increases with the normal baseline, while the corresponding histograms for

the DEM-assisted alignment, at the bottom in the same figure are always much more peaked, with most

of the values well confined in the range ±1/8 resolution cells, according to the accuracy requirement.

Furthermore, as revealed by the scatterplots of range pixel offset residuals w.r.t. topographic range for

the standard coregistration approach (at the top of Fig. 9), there is evidence of correlation of residual
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offsets with topographic range in case of standard coregistration. No correlation is instead noticeable for

the improved DEM-assisted method, as expected (at the bottom in the same figure). It is important to

point out that the observed correlation of the polynomial residual offsets is not with the absolute ellipsoid

height, but with the relative height w.r.t. a mean value over the scene. By comparing the range residual

offset plots at the top of Fig. 7 for the standard coregistration with the radarcoded DEM, shown in Fig. 6

for the selected test site, residuals appear indeed much more intense not only at the top of mountainous

areas but also on low-laying lands, such as valleys, i.e. over all areas whose height is much different from

the average value.

Finally, in Fig. 10 the comparison of the performances of the standard coregistration approach versus

the DEM-assisted one is accomplished through the interferometric coherence merit figure (resp., γs and

γd) for the interferograms #1 ÷#5 (see Tab. I). In particular, Fig. 10 has to be interpreted as follows.

Low coherent pixels (where both γs and γd are lower than a threshold value γth = 0.1) have been masked

(black colour); white dots indicate substantial equivalence in the performances of the two coregistration

approaches, i.e. |γd − γs| < ε, where ε has been set to 0.05 in order to avoid noise due to the estimator;

red dots indicate better performances of DEM-assisted method w.r.t. the standard one (in other words,

γd > γs + ε). Blue dots indicate better performances of the standard coregistration (γs > γd + ε): in

practice there is no evidence of better performances of standard coregistration in any of the interferograms

analyzed. The interferometric coherence confirms therefore the conclusions drawn from the analysis of

the first merit figure: the higher the normal baseline, the higher the gain in performance introduced by

the DEM-assisted approach.

Let us consider now the second (Tanzania) test site, and the TSX ascending interferogram, labeled as

#6 in Tab. I. Identical conclusions may be drawn for it in terms of pixel offset residuals (Fig. 13 and 14)

and their correlation to topography (Fig. 15). The longer baseline (> 300 m, Tab. I) leads to residual

offsets exceeding one pixel, when warp functions are modeled by 2-D polynomials, in accordance with

simulation results (Fig. 4). There is no evidence of better performances of standard coregistration even

in the coherence difference map shown in Fig. 17. In this case study, the improvement in interferometric

coherence is clearly visible at the top of the “Ol Doinyo Lengai” volcano (Fig. 16), where the coherence

maps corresponding to both the coregistration approaches are shown for a visual comparison.

Real data processing results confirm therefore that the DEM-assisted approach to SAR image alignment

is generally worthwhile for the case of high-resolution SAR data, and justifies the higher computational
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cost. In those cases in which the standard coregistration is still acceptable, i.e. for short baselines, the

DEM-assisted approach never shows worse performances.

[TABLE 1 about here.]

[Fig. 5 about here.]

[Fig. 6 about here.]

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

[Fig. 12 about here.]

[Fig. 13 about here.]

[Fig. 14 about here.]

[Fig. 15 about here.]

[Fig. 16 about here.]

[Fig. 17 about here.]

V. CONCLUSIONS

An assessment of the performances of a geometrical DEM-assisted coregistration with respect to more

traditional approaches (warp functions modeled as 2-D polynomials) has been carried out. In particular,

the impact of range sampling rate, topographic range over the covered swath, and DEM errors, on the

final coregistration precision has been evaluated for different radar wavelenghts, postings and side-looking

geometries, through both analytical relationships and simulations. Simulation tests show that DEM-assisted

coregistration is recommended, especially in case of long normal baselines and rough topography. In

particular, for X-band interferometry, this approach is absolutely to be preferred to the standard one,

in spite of its higher computational cost, because of the higher resolution of the data w.r.t. C and L
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band. The entity of misregistrations due to smooth warp functions (such as 2-D polynomials) has been

theoretically estimated for all the three radar bands, for a wide range of normal baselines and topographic

ranges. Performance diagrams have been drawn from the simulation results, which may be used as quick

reference to decide case by case whether the DEM-assisted method is really necessary in order to ensure

sub-pixel alignment accuracy.

The two coregistration approaches have been further compared by processing real data acquired by

the COSMO-SkyMed and TerraSAR-X missions, since, among the three radar bands, X-band is the most

affected by misregistrations due to uncompensated topography.

Coregistration tests on real data have been carried out by applying conventional and DEM-assisted

methods implemented in the DORIS open-source SAR interferometric processing tool, developed at

TU Delft. Real data processing confirms that 1) conventional alignment methods become inaccurate when

dealing with higher resolution data, as soon as the normal baseline or the topographic range increases, and

2) good performances of the DORIS processing chain are obtained for the coregistration of high-resolution

SAR data.

APPENDIX

A. Geometric Model Refinement

The model introduced in Sect. II approximates the reference ellipsoid with a sphere tangent to it in

the point P nad
M (Fig. 1), i.e. the nadir projection of the master satellite position on the reference ellipsoid.

The radius ρ of the spherical model is coincident with the Earth curvature radius Raz in P nad
M in the

zero-Doppler plane π. The validity of the model so far introduced relies on the assumption that for every

point along the ground swath, the difference between the heights above the spherical approximation just

defined, HG, and the reference ellipsoid, hG, may be considered negligible (Fig. 1).

In other words, it assumes implicitly that the curvature center of the elliptic cross section in the zero-

Doppler plane π corresponding to a point generically selected along the swath extension is coincident,

or, at least, very close to the origin Õ, that is the curvature center w.r.t. the nadir projection of the

master satellite position P nad
M . This approximation is acceptable only for very low geodetic latitudes (e.g.

Tanzania – see Sec. IV-A) since, near the Equator, the orbital heading αh is not too far from 0 or 180

degrees (depending on the orbital pass direction, whether ascending or descending) and, therefore, the

zero-Doppler plane π is roughly parallel to the prime vertical section. Since, for any point located near to
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the Equator, its prime vertical section is, in turn, roughly parallel to the equatorial plane, the eccentricity of

the corresponding elliptic cross section is very close to 1. For high latitudes, however, a model refinement

is necessary. In this case, indeed, by evaluating the distance between a generic ground point and the origin

Õ, its variation along a swath extension of 100 km (ERS) may reach also hundreds of meters. In these

cases the origin Õ cannot be considered anymore close to the center of curvature of elliptic cross section

along the swath width and a refinement of the spherical model is necessary Because of the side-looking

acquisition geometry, this can be obtained by substituting the projection circle π with a circle whose

center Cmr and radius ρ̃ are equal, respectively, to the center and radius of curvature of the elliptic cross

section corresponding to the point P nad
mr located at the swath middle range, instead of the master nadir

projection P nad
M (see Fig. 19). Simulations show that this approximation is valid at any latitude, since the

distance between a generic point on the ellipse and the curvature center Cmr differs from the radius ρ̃ by

no more than half centimeter within a 100-km swath extension. and slightly higher for a 250-km swath.

The model is also valid for wider swaths, such as in the case of the future Sentinel-1 mission (∼ 250

km) for the Interferometric Wide Swath Mode.

The position of the center Cmr can be easily derived once an analytical expression for the elliptic cross

section in the zero-Doppler plane π has been retrieved. With respect to the Õx̃z̃ reference system, this

elliptic cross section (whose semi-axes â and b̂ and first eccentricity ê are different in general from those

of the reference ellipsoid) is described by the following equation:

(rxx̃x̃ + rxz̃ z̃ + xÕ)2

a2

+
(ryx̃x̃ + ryz̃ z̃ + yÕ)2

a2

+
(rzx̃x̃ + rzz̃ z̃ + zÕ)2

b2
= 1,

(A.1)

where the coefficients rij̃ are given by (4).

Once a rotation and translation of the Õx̃z̃ axes are performed in order to make them coincident with

the ellipse axes (coordinate system Ôx̂ẑ in Fig. 19), the coordinates of the curvature center Cmr are given

by:

x̂Cmr = x̂P nad
mr
− â (1− ê2) cos ϕP nad

mr

3

√
1− ê2 sin2 ϕP nad

mr

,

ŷCmr = ŷP nad
mr
− â (1− ê2) sin ϕP nad

mr

3

√
1− ê2 sin2 ϕP nad

mr

,

(A.2)
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where P nad
mr is the projection on the ellipse of the ground point at middle range, Gmr, and the angle ϕP nad

mr

(Fig. 19) should not be confused with the geodetic latitude of P nad
mr , since the zero-Doppler plane π is not

coincident in general with the prime meridian section.

As before, our aim is to estimate, for each master pixel pM , the corresponding range pixel offset between

master and slave or, equivalently, see eq. (7), the distance RS,G between the slave satellite and the ground

point G. Assuming the position of Cmr in the Õx̃z̃ reference system has been retrieved for a generic

master slow time, the distance RS,G can be estimated more accurately in the refined geometrical model

just described. It can be shown that eq. (9) is still valid, provided the following substitutions are made:

α → (α− β),

(ρ + HM) → RC,M ,

(ρ + HS) → RC,S,

(ρ + HG) → (ρ̃ + HG),

(A.3)

where the height HG above the spherical model for a generic point G along the swath extension may be

further replaced with the corresponding value hG above the reference ellipsoid, which is a quantity easily

retrieved from any DEM, thanks to the refined spherical model described in this section, and

RC,M =
√

R2
Õ,M

+ R2
Õ,C

− 2RÕ,M RÕ,C cos δM,C ,

RC,S =
√

R2
Õ,S

+ R2
Õ,C

− 2RÕ,S RÕ,C cos(δM,C − δM,S),

RÕ,S =
√

R2
Õ,M

+ B2 − 2BRÕ,M cos α,

sin β =
RÕ,C

RC,M

sin δM,C ,

sin δM,S =
B

RÕ,S

sin α

(A.4)

are all known quantities, not dependent on the master pixel considered.

[Fig. 18 about here.]

[Fig. 19 about here.]

In conclusion, the spherical model defined by eq. (9) can be still considered a good approximation of

the ellipsoid surface along the ground swath for high latitudes, provided the substitutions listed in eq. (9)

are made.
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B. Analytical derivation of the coregistration sensitivity to DEM vertical accuracy

Let us assume to coregister SAR images through a DEM-assisted approach. In this section we derive

analytically the entity of range pixel offset residuals for a given height error, due for example to the

intrinsic finite vertical accuracy of the DEM or to inaccurate radarcoding procedures.

As mentioned in sec. III-B, a good approximation for the entity of the misregistration, (∆p̃DEM −∆p),

for a given height error δHG is provided by eq. (14). According to the geometrical model described in

Sec. II, the entity of the misregistration due to a given radarcoded height error can be therefore easily

estimated once the slave slant range variation w.r.t. the topographic height is known along the swath width.

In this section, such expression is analytically derived. The slave slant range may be written as (Fig. 1):

RS,G =
√

(HS + ρ)2 + (HG + ρ)2 − 2 (HS + ρ) (HG + ρ) cos δS,G (B.1)

Therefore, its variation with the topographic height is given by:

∂RS,G

∂HG

=
1

RS,G

[
(HG + ρ)− (HS + ρ) cos δS,G + (HS + ρ) (HG + ρ) sin δS,G

∂δS,G

∂HG

]
, (B.2)

Let us compute therefore the variation of the angle δS,G with the topographic height (Fig. 1). From eq. (8),

δS,G = δM,G − arcsin
B sin α

(HS + ρ)
(B.3)

Hence:

∂δS,G

∂HG

=
∂δM,G

∂HG

(B.4)

Therefore, let us derive analytically the angle δM,G and its variation with HG:

δM,G = arcsin

(
RM,G

HG + ρ
sin θM

)
= arcsin (f (HG)) , (B.5)

∂δM,G

∂HG

=
1

cos δM,G

∂f (HG)

∂HG

, (B.6)

since the master look angle for the generic pixel pM is a function only of the corresponding ellipsoid
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height, HG, once fixed the side-looking geometry:

cos θM =

[
(HM + ρ)2 + R2

M,G − (HG + ρ)2
]

2RM,G (HM + ρ)
, (B.7)

Finally, let us compute the function f , just introduced, and its first derivative:

f (HG) =
RM,G

HG + ρ

√√√√√1−
[
(HM + ρ)2 + R2

M,G − (HG + ρ)2
]2

4R2
M,G (HM + ρ)2

=

√
ξ

2 (HM + ρ) (HG + ρ)
,

(B.8)

where

ξ =
[
(HM + ρ + RM,G)2 − (HG + ρ)2

] [
(HG + ρ)2 − (HM + ρ−RM,G)2

]
. (B.9)

Thus:

∂f (HG)

∂HG

=
1

2 (HM + ρ)

[
−

√
ξ

(HG + ρ)2 +
1

2 (HG + ρ)
√

ξ

∂ξ

∂HG

]

= sin δM,G

[
− 1

(HG + ρ)
+

1

2ξ

∂ξ

∂HG

] (B.10)

where:

∂ξ

∂HG

=− 2 (HG + ρ)
{[

(HG + ρ)2 − (HM + ρ−RM,G)2
]

−
[
(HM + ρ + RM,G)2 − (HG + ρ)2

]}

=− 4 (HG + ρ)
{
(HG + ρ)2 − (HM + ρ)2 −R2

M,G

}
.

(B.11)

Hence:

∂f (HG)

∂HG

= sin δM,G

[
− 1

(HG + ρ)

−
2 (HG + ρ)

{
(HG + ρ)2 − (HM + ρ)2 −R2

M,G

}

ξ

]

=− sin δM,G

(HG + ρ)
[1 + Ω]

(B.12)
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where:

1 + Ω = 1 +
2 (HG + ρ)2

{
(HG + ρ)2 − (HM + ρ)2 −R2

M,G

}
[
(HM + ρ + RM,G)2 − (HG + ρ)2

] [
(HG + ρ)2 − (HM + ρ−RM,G)2

]

= −
[
(HG + ρ)2 −

(
(HM + ρ)2 −R2

M,G

)] [
(HG + ρ)2 +

(
(HM + ρ)2 −R2

M,G

)]
[
(HG + ρ)2 − ((HM + ρ) + RM,G)2

] [
(HG + ρ)2 − ((HM + ρ)−RM,G)2

]
(B.13)

Summarizing:

∂RS,G

∂HG

=
1

RS,G

[
(HG + ρ)− (HS + ρ) cos δS,G + (HS + ρ) (HG + ρ) sin δS,G

∂δS,G

∂HG

]

=
1

RS,G

[
(HG + ρ)− (HS + ρ) cos δS,G + (HS + ρ) (HG + ρ)

sin δS,G

cos δM,G

∂fG

∂HG

]

=
1

RS,G



(HG + ρ)− (HS + ρ) cos δS,G ·

[
1− tan δM,G tan δS,G

·
[
(HG + ρ)2 −

(
(HM + ρ)2 −R2

M,G

)] [
(HG + ρ)2 +

(
(HM + ρ)2 −R2

M,G

)]
[
(HG + ρ)2 − ((HM + ρ) + RM,G)2

] [
(HG + ρ)2 − ((HM + ρ)−RM,G)2

]
]



(B.14)

or:

∂RS,G

∂HG

=
1

RS,G

[(HG + ρ)− (HS + ρ) η] , (B.15)

where

η = cos (δM,G − δM,S)

· [1− tan δM,G tan(δM,G − δM,S)

ζ(HG, HM , ρ, RM,G)] ,

(B.16)

with

ζ(HG, HM , ρ, RM,G) =

(HG + ρ)2 −
[
(HM + ρ)2 −R2

M,G

]

(HG + ρ)2 − [(HM + ρ) + RM,G]2

·
(HG + ρ)2 +

[
(HM + ρ)2 −R2

M,G

]

(HG + ρ)2 − [(HM + ρ)−RM,G]2
.

(B.17)

End of proof.
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Fig. 3. [A] Polar Diagrams of the absolute normal baselines |B⊥| at mid-range for different master-slave configurations, obtained by varying
the baseline orientation angle α from 0 to 360 degrees (constant distance B = 1 km between master and slave). [B] Polar diagrams of the
pixel offset residuals estimated for polynomial warp functions with degrees 2 (solid line) and 3 (dashed line), corresponding to each pair
({α, |B⊥|}) in [A] (the topographic range ∆HG is assumed to be equal to 1 km). [C] Plots of the pixel offset residuals due to inaccurate
knowledge of the topographic profile, by assuming the vertical accuracy of SRTM DEMs. All simulated pixel offsets in [B] and [C] have been
derived w.r.t. look angles of the default stripmap looking modes for ERS/ENVISAT (C band) and PALSAR (L band) sensors. Simulations
in X band have been carried out for the specific beam of the TSX real data processed (table I). [D] Ratio between the pixel offset residuals
due to the smoothness of the polynomial function and the corresponding residuals due to DEM errors. Since for each pair ({α, |B⊥|}) this
ratio is much higher than 1, performances of the DEM-A coregistration are always better than the standard approach.
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Fig. 4. Diagrams show the entity (in pixels) of range misregistrations estimated for a wide range of normal baselines and topographic
ranges in case of warp functions modeled by 2D polynomial of 2nd (left) and 3rd (right) degree. Top: ENVISAT (swath:IS2) / ERS (C
band); middle: PALSAR (beam:#07 - look angle: 34.3 deg) (L band); bottom: TerraSAR-X (strip:#05 - look angle: 23.9 deg) (X band).



FIGURES 35

Fig. 5. Test Site: Abruzzo (Italy). Colored frames refer to the ground coverage of CSK descending interferograms #1÷#5 (see Tab. I).
Inset shows the location of the area of interest (AOI).
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Fig. 6. Test Site: Abruzzo (Italy). SRTM DEM radarcoded in the CSK SAR geometry (Pass direction: descending. Beam: H4-03).
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Fig. 7. Test Site: Abruzzo (Italy) - CSK Descending Dataset. Comparison between the range pixel offset residuals corresponding to the
standard coregistration approach (top row) and the DEM-assisted alignment method (bottom row) for interferograms #1 ÷ #5 in Tab. I
(in white, low coherence areas). As expected, maximum residual offsets increase with increasing normal baseline, when warp functions are
modeled by 2-D polynomials. Indeed, according to simulation results (Fig. 4), with a topographic range of about 2 km (as it is for the
selected test site), residual offsets overcome 1/8 resolution cell for normal baselines higher than ∼100 m.
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Fig. 8. Test Site: Abruzzo (Italy) - CSK Descending dataset. Histograms of the range pixel offset residuals for the standard coregistration
approach (top row) and for the DEM-assisted alignment method (bottom row), for interferograms #1 ÷#5 (see Tab. I). As already seen
in Fig. 7, the higher the normal baseline, the higher the percentage of residual offsets worse than 1/8 resolution cell, when warp functions
are modeled by polynomials. This percentage becomes unacceptable for normal baselines exceeding ∼100 m, according to the simulation
results (Fig. 4) with a topographic range of around 2 km (as it is for the selected test site). Instead, residual worsening is not appreciable if
a DEM-assisted alignment method is performed.
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Fig. 9. Test Site: Abruzzo (Italy) - CSK Descending Dataset. Scatterplots of range residual offsets w.r.t. topographic range for the standard
coregistration approach (top row) and for the DEM-assisted alignment method (bottom row) for interferograms #1 ÷ #5 (see Tab. I).
Scatterplots reveal correlation of range residual offsets with topographic range in case of standard coregistration, as expected. In particular,
by topographic range we mean here the difference between the actual pixel height and an average height over the selected area of interest.
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[#1] |B⊥| = 52 m [#2] |B⊥| = 70 m [#3] |B⊥| = 148 m [#4] |B⊥| = 182 m [#5] |B⊥| = 287 m

Fig. 10. Test Site: Abruzzo (Italy) - CSK Descending Dataset. Comparison of the performances of the standard coregistration approach
versus the dem-assisted one by comparing the corresponding coherence maps (resp., γs and γd) for the interferograms #1÷#5 (see Tab. I).
Low-coherence pixels (where both γs and γd are lower than a threshold value γth = 0.1) have been masked (black color). White dots
indicate substantial equivalence in the performances of the two coregistration approaches |γd − γs| < ε, where the threshold ε has been set
to 0.05 in order to take into account estimation biases. Red dots indicate better performances of DEM-assisted method w.r.t. standard one
(in other words, γd > γs + ε). Blue dots show better performances of the standard coregistration (γs > γd + ε). Note the consistently better
performance of DEM-assisted coregistration w.r.t. to the standard approach. oThe higher the normal baseline, the higher the difference in
the effectiveness of the two coregistration approaches, also in terms of processing decorrelation and overall interferometric coherence.
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Fig. 11. Test Site: Ol Doinyo Lengai volcano (Tanzania). Yellow frame refers to the ground coverage of the TSX ascending interferogram
#6 (see Tab. I). Inset shows the location of the area of interest (AOI).



FIGURES 42

Fig. 12. Test Site: Ol Doinyo Lengai volcano (Tanzania). SRTM DEM radarcoded in the TSX SAR geometry (Pass direction: ascending.
Beam: strip 05).
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Fig. 13. Test Site: Ol Doinyo Lengai (Tanzania). Range pixel offset residuals for the TSX ascending interferogram #6 (see Tab. I): (left)
standard coregistration; (right) DEM-assisted coregistration (in white, low coherence areas). According to simulation results (Fig. 4), with a
topographic range of around 2 km (as it is for the selected test site), residual offsets overcome one pixel with normal baselines higher than
300 m, when warp functions are modeled by 2-D polynomials.



FIGURES 44

−0.5 0 0.5
0

50

100

150

200

250

300

350

400

450

500

−0.5 0 0.5
0

50

100

150

200

250

300

350

400

450

500

Fig. 14. Test Site: Ol Doinyo Lengai volcano (Tanzania). Histograms of the residual offsets along slant range for the TSX ascending
interferogram #6 (B⊥ ≈ 313 m, see Tab. I): (left) standard coregistration; (right) DEM-assisted coregistration. The percentage of residual
offsets worse than 1/8 resolution cell is unacceptable when warp functions are modeled by polynomials.
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Fig. 15. Test Site: Ol Doinyo Lengai volcano (Tanzania). Scatterplots of range residual offsets w.r.t. topographic range for the standard
coregistration approach (top images) and for the DEM-assisted alignment method (bottom images) for TSX interferogram #6 (see Tab. I).
Scatterplots reveal correlation of residual offsets with topographic range in case of standard coregistration, as expected. In particular, by
topographic range we mean here the difference between the actual pixel height and an average height over the selected area of interest.
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Fig. 16. Test Site: Ol Doinyo Lengai volcano (Tanzania). Coherence maps estimated for the TSX ascending interferogram #6 (B⊥ ≈ 313 m,
see Tab. I) when master and slave images are coregistered through conventional method (left) and DEM-assisted approach (right). The
improvement in the coherence is clearly visible at the top of the volcano.
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Fig. 17. Test Site: Ol Doinyo Lengai volcano (Tanzania) - TSX Ascending interferogram #6 (B⊥ ≈ 313 m, see Tab. I). The comparison of
the performances of the standard coregistration approach versus the DEM-assisted one is accomplished here by comparing the corresponding
coherence maps (resp., γs and γd). Low-coherence pixels (where both γs and γd are lower than a threshold value γth = 0.1) have been
masked (black color). White dots indicate substantial equivalence in the performances of the two coregistration approaches |γd − γs| < ε,
where varepsilon has been set to 0.05 in order to take into account estimation biases. Red dots indicate better performances of DEM-assisted
method w.r.t. standard one (in other words, γd > γs + ε). Blue dots show better performances of the standard coregistration (γs > γd + ε):
again, there is no evidence of better performances of standard coregistration.
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Cmr

ρ̃

PM

PS

PG

P nad
G

P nad
M

HG

Fig. 18. Refined geometric model. The elliptic cross section (dashed red line) between the reference ellipsoid (WGS84) and the zero-Doppler
plane π is approximated with a circle (solid red line) centered in Cmr, i.e. the curvature center of the ellipse w.r.t. the nadir projection of
the point PG,mr , located at mid-range. Õ, the curvature center of the ellipse w.r.t. the nadir projection P nad

M of the master satellite position.
The position of the slave satellite is provided in terms of the distance B (or baseline) and the baseline orientation angle α, measured from
the master nadir-direction towards its looking direction.
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ẑ z̃

â
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Fig. 19. 2-D view of the elliptic cross section of the reference ellipsoid on the zero-Doppler planeπ. Õ and Cmr are the curvature centers
in the nadir projections, P nad

M and P nad
mr , of the master satellite position and the ground point at middle range, respectively. In practice, Õ is
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M ) and P2, depending on the particular azimuth angle of

the section π. See also Fig. 2 for the location of points P1 and P2 .
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TABLE I
PROCESSED STRIPMAP SLC DATASET (Bt ≡ TEMPORAL BASELINE, B⊥ ≡ NORMAL BASELINE, B⊥,c ≡ CRITICAL BASELINE, HM ≡

MASTER SATELLITE HEIGHT , ∆HG ≡ TOPOGRAPHIC RANGE OVER THE ENTIRE PROCESSED SCENE, θOFF ≡ OFF-NADIR ANGLE, θINC ≡
INCIDENCE ANGLE)

TEST SITE
ABRUZZO OL DOYNIO LENGAI

(ITALY) (TANZANIA)

INTERFEROGRAM ID #1 #2 #3 #4 #5 #6

MASTER SENSOR CSK-S2 CSK-S2 CSK-S2 CSK-S2 CSK-S2 TSX

SLAVE SENSOR CSK-S3 CSK-S3 CSK-S3 CSK-S3 CSK-S3 TSX

M [YYYY.MM.DD] 2009.06.06 2009.04.19 2009.05.21 2009.09.10 2009.09.26 2008.05.05

S [YYYY.MM.DD] 2009.06.07 2009.04.20 2009.05.22 2009.09.11 2009.09.27 2008.05.16

FREQUENCY BAND X (9.60 GHZ) X (9.60 GHZ) X (9.60 GHZ) X (9.60 GHZ) X (9.60 GHZ) X (9.65 GHZ)

POLARIZATION VV VV VV VV VV HH

PASS DIRECTION DESCENDING DESCENDING DESCENDING DESCENDING DESCENDING ASCENDING

Bt [days] 1 1 1 1 1 11

|B⊥| [m] 52 70 148 182 287 313

|H2π | [m] 125 92 44 36 23 12

|B⊥,c| [km] ∼ 4.98 ∼ 4.98 ∼ 4.98 ∼ 4.98 ∼ 4.98 ∼ 4.33

BEAM ID H4-04 H4-04 H4-04 H4-04 H4-04 STRIP 05

θOFF [◦] 27.71÷ 30.47 27.71÷ 30.47 27.71÷ 30.47 27.71÷ 30.47 27.71÷ 30.47 ∼ 23.9

θINC [◦] 30.67÷ 33.80 30.67÷ 33.80 30.67÷ 33.80 30.67÷ 33.80 30.67÷ 33.80 24.35÷ 28.00

RSR [MHz] 127.5 127.5 127.5 127.5 127.5 165

PRF [kHz] 3.33 3.33 3.33 3.33 3.33 3.61

Range BW [MHz] 102.0 102.0 102.0 102.0 102.0 150.0

Azimuth BW [kHz] 2.80 2.80 2.80 2.80 2.80 2.77

Swath Width [km] ∼ 41 ∼ 41 ∼ 41 ∼ 41 ∼ 41 ∼ 36

HM [km] ∼ 628 ∼ 628 ∼ 628 ∼ 628 ∼ 628 ∼ 512

∆HG [km] ∼ 2.13 ∼ 2.13 ∼ 2.13 ∼ 2.13 ∼ 2.13 ∼ 2.13


