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ABSTRACT 
Since the early 1990’s, satellite radar interferometry (InSAR) has been used to measure sub-cm 
deformations of the earth’s surface, for example related to land subsidence and tectonic or volcanic 
deformation. Compared to traditional geodetic techniques for deformation monitoring, which are point 
positioning methods, the imaging characteristics of InSAR introduce new possibilities in the interpretation 
of the data. An additional consequence of the imaging characteristics is the fact that deformation that was 
not known beforehand can now be detected and monitored. Lately, the technique has been refined by 
exploiting the large data archive of satellite images acquired since 1992. This way, time series processing 
enables the detection of very small movements, potentially with a precision of 0.1 mm per year, with a 
spatial resolution of about 20 meters, over areas up to 100 km across. 

Although these technical achievements in terms of the observations are the necessary ingredients for a new 
level of applications, it is paramount that new models need to be developed to link the observations to 
parameters describing the driving forces behind the deformations. With increasing precision levels, more 
subtle movements of the earth become detectable. Moreover, in many cases there will be more than one 
mechanism responsible for the detected deformation. For this reason, geographic information systems 
become indispensable to systematically combine all possible sources of additional information that may 
contribute to the model formulation. Interactive and automatic testing procedures need to be developed and 
included in the GIS environment, and data sources with varying characteristics (spatial, temporal, formats, 
qualitative, quantitative, two- and three-dimensional) need to be easily integrated in the analysis. In this 
paper we give an overview of the requirements of such systems in relation to radar interferometry and the 
potential for improved understanding of processes in the earth’s crust. The main focus will be on the urban 
environment and processes related to land subsidence and water management. 
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1 INTRODUCTION 
Large scale surface deformation in the Netherlands, such as tectonic tilting or land subsidence due to gas 
extraction, is relatively well known, based on conventional geodetic methods. Unfortunately, local 
deformations, e.g. due to ground water level changes, infrastructural works, bad foundation of buildings, or 
industrial water extraction, are much harder to monitor, since measuring such local deformations requires 
prior knowledge on their existence, location, and on their driving mechanisms. Second, especially for 
slowly deforming objects, a time series of several years needs to be established with high accuracy, high 
spatial resolution, and a dense spatial sampling. These requirements translate directly into costs and, 
consequently, a high barrier to start such an analysis. As a result many local deformations in the 
Netherlands remain unknown. 

Using satellite radar remote sensing, it is now possible to monitor subtle systematic movements of single 
buildings with a sub-mm/y precision from an altitude of 800 km [1]. These results are obtained by 



analyzing the reflections of radar waves from objects at the earth's surface [2]. The spatial resolution is 
about 10 m, a swath width of 100 km, with a temporal resolution of 5 weeks, and starting from 1992. 

Applying this technique to areas in the Netherlands has revealed stunning deformation phenomena such as 
the sagging of parts of the A10 highway around Amsterdam and the effects of local gas extraction beneath 
Rotterdam. However, of the hundreds of points/km2 there are many that deform in an unexpected way, 
making the identification of the driving mechanisms impossible from the data only.  

Within the project: “Pin-Point deformation monitoring by satellite radar remote sensing and 4D GIS” a 
joint analysis of satellite radar deformation data over the Netherlands is foreseen, using GIS technology. 
Different information sources will be combined (topographical, cadastral, geotechnical, meteorological, 
and visual information, water level time series, etc) to analyze all relevant information related to a specific 
observation. For this goal, the radar deformation results need to be tied to the GIS environment, while GIS 
techniques need to be developed and optimized. This includes OGC-support (enabling the interoperability 
of research driven datasets), on-the-fly projection (datum shifts) of regional data sets, and solving the 
problem of confidential datasets (allowing only operations and analyses on datasets via the internet). Most 
important is the incorporation of the third and fourth dimension within the storage, calculations and 
visualization of the geo-datasets. This will lead to a combination of information sources that are crucial for 
understanding the mechanisms behind the observed deformation. The developed methods and algorithms 
should contribute to the final goal of the systematic and recursive monitoring of deformation in the 
Netherlands. 

 

2 SATELLITE RADAR DEFORMATION MONITORING 
We will illustrate the potential and requirements of applying Satellite Radar Monitoring by the difficulties 
in correlating groundwater extraction and land subsidence within the province of Zuid-Holland in the 
Netherlands. 

In figure 1 the location of permanent groundwater extraction licenses within “Zuid Holland“ is illustrated. 
One of the highest extractions is related to biochemical industry activities at Delft (figure 2). It is possible 
that this extraction is related to local landsubsidence, as illustrated in figure 3.  

  

Figure 1: Groundwater extraction Zuid-Holland Figure 2: Location of DSM GIST at Delft 

If we look into detail (at one of the canals in Delft) the impact of this small deformation (only 5 mm / year) 
is shown in figure 4, where a period of hight rainfall will result in wet feet. 

But are we sure about this conclusion? In this case it could be, cause of the availability of prior knowledge 
(existence, location, driving mechanism), the null-survey and long time series, the high temporal and 
spatial resolution, and the time and money to survey (leveling). 

The deformation in this example was to a certain extent easy to detect. However, many others, and 
especially local deformations will be remain undetected as long as time series of leveling data are not 
present for each building under study.  



 

  

Figure 3: Deformation Delft 1961-1974 (leveling) Figure 4: Local land subsidence in combination with 
heavy rain fall leads to extremely high water levels in the 
canals of Delft 

 
2.1 LOCAL DEFORMATIONS USING SATELLITE RADAR REMOTE SENSING 
With the availability of ERS SAR amplitude images this process of detecting local deformations could be 
made faster, and more important: we can trace deformations that are not so evident as in the first example. 

  

Figure 5: ERS SAR amplitude image of Delft Figure 6: Reveal deformation out of permanent scatters 

From the ERS SAR images (swath width 100km, spatial resolution 10 m, temporal resolution 5 weeks) that 
are available from 1992 the systematic movement of permanent scatters can be obtained with a mm/year 
precision, see figures 5 and 6. These permanent scatters are not known beforehand, and not all of them will 
reveal a systematic trend. But the scatters that do, and are located i.e. at or around buildings will expose a 
deformation of that building or some area in its neighborhood. 



 

To determine what is moving sometimes a 
validation within the field is required, see figure 7. 

Now the deformation is known, but the driving 
mechanisms behind this subsidence are not. These 
local deformations could be caused by ground water 
level changes, infrastructural works, the building 
foundations, industrial water extraction, gas, oil, 
salt exploration, etc. etc. All these possible causes 
should be identified and taken into account in the 
deduction. (figure 8). 

Figure 7: Field test to validate a local subsidence: here it is 
the premise that is subsiding instead of the building. 

 

 

Figure 8: Possible correlation between oil-bearing areas and deformations came across the surface 

  

3 GEO-INFORMATION PROCESS CHAIN 
If we want to combine all possible sources of additional information related to the research goal to monitor 
land subsidence, we come across the well-known geo-information process chain [3]. Based on a common 
geometric infrastructure (i.e. reference systems), the needed geo-information is collected, modeled and 
stored within geo-database management systems. Now we can deduct the desired information and an 
iterative process of analysis and handling, presentation and interaction is started. This process ends when 
some new results (new datasets, maps) are derived and that we want to exchange to other users or 
scientists. As these others are performing a similar, but for their goal intended, geo-information process 
chain, duplications within the needed geo-information collection, modeling and storage are unavoidable. 
And more harmful, they could perform some analysis and data handling with the data under study without 
a real understanding of what is allowed to do, resulting in non-valid or odd outcomes. If these results are 
exchanged to the community, without giving a clue on the lineage, more strange results are to be expected, 
without any mechanism to identify this kind of unreliable consequences. 

 
3.1 FROM DATA-PROCESSING TO GEO-INFORMATION INFRASTRUCTURE 
To avoid the problems addressed in the introduction, the geo-information application transitions need to be 
supported by scientific, technological and societal innovations. The four main transactions, as indicated by 
the Dutch knowledge project proposal ‘Space for Geoinformation’ [4] are:  



1. From ad hoc (project) driven geo-information processing to a full Geo-Information 
Infrastructure; 

2. From static ‘maps’ to ‘dynamic’ models of space; 

3. From traditional map production to dynamic data collection and positioning on the fly; 

4. From implicit semantics of geo-information to explicit knowledge. 

The Geo-Information Infrastructure consists of four components: 

1. Basic or authentic geo-data sets in different domains: topography, elevation, cadastre, geology, 
etc; 

2. Geo-data processing services in general and the geo-DBMS specifically; 

3. Interoperability standards; 

4. (Wireless) networks. 

The introduction and acceptance of geo-Database Management Systems together with the success of the 
Internet from the mid ’90 has made an end to the propriety geodata formats and dedicated systems. Now it 
is in theory no longer needed to trace the data sources firstly and to exchange the available datasets in the 
format appropriate for the unique system secondly to analyze and visualize the data. When the 
organizational, financial, technical, etc. issues of the geo-information infrastructure are tackled in theory it 
should possible to improve this situation by providing: 

1. Consensus on the geometric parts of the data model, both raster and vector data have to be 
supported (including different spatial reference systems); 

2. A formal description (meta-data) of the geo-datasets, covering both the spatial and non-spatial 
aspects; 

3. Catalogue services to access and query the meta-data and how the results of such a query is 
returned; 

4. A mean to query the geo-data itself; 

5. A Geometric Modeling Language (GML) to format and transfer the resulting geo-dataset. 

 

3.2 BEYOND WEB MAP SERVICES, WEB FEATURE SERVICES AND LOCATION 
SERVCICES  
The first visible developments achieved by the geo-information infrastructure initiative are the so-called 
web map services (WMS) and web feature services (WFS). This kind of services returns on a specified 
request (map-extent, layers) either a bitmap (.bmp, .jpg), or the vector data (embedded within GML). The 
users have the guarantee that they have the most actual and complete geo-dataset directly from the source 
at their disposal, see figures 9 and 10. 

  

Figure 9 : Web Map Server Figure 10 : Web Feature Server 



The Open Geospatial Consortium [5] identifies in conjunction to the WMS and WFS services several other 
location services, all of them client-server based. 

1. Directory Service - Find the location of a specific or nearest place, product or service; 

2. Gateway Service - Fetch the position of a known terminal from the network; 

3. Geocoder Service - Transforms a description of a location into a normalized description of the location; 

4. Route Service - Determines travel routes (a special kind of WFS); 

5. Navigation Service - Determines travel routes and navigation information between two or more points; 

6. Presentation (Map Portrayal) Service - Portrays a map up of a basemap (a la WMS); 

7. Reverse Geocoder Service - Transforms a given position into a normalized description. 

This list of services is dedicated to location-based services, with a relative simple functionality. For our 
purposes we need a more demanding set of geodata processing services, and also means to store the 
utilized model and repeat the model with other of data or parameters. As noted, the initiatives of the Open 
Geospatial consortium are promising, but yet not sufficient to deal with i.e. monitoring land subsidence. 

 

Within these kinds of case studies, we will combine several geo-
information sources without knowing the added value in doing so 
beforehand. One way to deal with this manner is to utilize the 
map-use-cube, as introduced by MacEachren and modified with 
Kraak [6] in mind. This cube (figure 11) contains three 
dimensions: private to public, high interactivity to low 
interactivity, and revealing knowns to exploring unknowns. 
Traditional cartography has emphasized public use, low 
interactivity and revealing knowns, while visualization 
emphasizes private use, high interactivity, and exploring 
unknowns (though perhaps without ignoring presentation of 
information). So we will visualize these datasets in such way that 
they will hopefully reveal some information to us. We will 
process the data not according to various fixed rules, but by trial 
and error, resulting in some knowledge about cause and effect. We 
will consult some other related disciplines to discuss what is on 
the map. And finally we will produce a map, fit it on a poster or 
presentation, add some notices and have some discussion with 
others on this scientific judgment during a workshop. 

Figure 11: Map-use-cube - from 
visualization to communication 

Kraak [7] discusses these relations between the fields of cartography and GIS, on the one hand, and 
scientific visualization on the other. He states:  

"Geovisualization integrates approaches from scientific visualization, (exploratory) cartography, image analysis, 
information visualization, exploratory data analysis (EDA) and GIS to provide theory, methods and tools for the 
visual exploration, analysis, synthesis and presentation of geospatial data. In this context, it is required that 
cartographic design and research pay attention to human computer interaction of the interfaces, and revive the 
attention for the usability of their products. Additionally, one has to work on representation issues and the 
integration of geocomputing in the visualization process. As such, maps and graphics are used to explore 
geospatial data and the exploration process can generate hypotheses, develop problem solutions and ultimately 
construct knowledge. In a geovisualization environment, maps are used to stimulate visual thinking about 
geospatial patterns, relationships, and trends. One important approach here is to view geospatial data sets in a 
number of alternative ways, e.g., using multiple representations without constraints set by traditional techniques or 
rules. This should avoid the trap described by Finke [8] who claim, “most researchers tend to rely on well-worn 
procedures and paradigms...” while they should realize that “…creative discoveries, in both art and science, often 
occur in unusual situations, where one is forced to think unconventionally.” This is well described by Keller and 
Keller [9], who in their approach to the visualization process suggest removing mental roadblocks and taking some 
distance from the discipline in order to reduce the effects of traditional constraints." 



 

Although this might be true, and most of us work this way, we all know that - getting back to our land 
subsidence-monitoring example - after some month we have forgotten the way we processed the data, the 
data itself is accidentally removed from the disk, and the researcher who has performed essential parts of 
the study has moved to another university. The only source left is the poster or a paper; both not intended 
to store the process information, but only a summery of the results. Maybe it is not at all times so 
destructive, but in the case of doing a study repeatedly with new available data, it should be made possible 
to perform the analyses exactly the way it was done before. 

 

3.3 WHAT WE NEED: INTEROPERABLE GEOSPATIAL PROCESSING SERVICES 
Here is how a geo-information infrastructure in conjunction to a proper geospatial processing management 
tool can help us to beat this trap. One way to achieve the ‘freedom in limitation’ is to optimize and develop 
the use of geospatial webservices in such way that these services can perform more complex and dedicated 
manipulations and analysis directly at the server side. Particularly image processing is one of these matters. 
It doesn’t make sense to copy Gigabytes of images, when only a small segment out of that is needed, or to 
invest in dedicated software with functionality applied only once during the project. When these functions 
are made available at the server-side, and the data needed is also stored somewhere where it belongs, the 
client could just receive what is asking for. Another example could be the access to nation wide 
topographical databases. Querying these databases by a WMS or WFS client is a first step, but the 
functionality is limited to just a map or – more useful – to the data itself. One could think of geospatial 
processing services that process the available data that reside somewhere at the place where it belong, the 
data stakeholder. The route and navigation services specified by the Open Geospatial Consortium are fine 
examples, but these cases could be extended to the full range of functionality available within desktop GIS. 

The advantages of this approach are not only convenient within the availability of these tools, but also in 
within the description and standardization of the interfaces, also known as: interoperability, see figure 12. 

  

Figure 12: Framework of OpenGIS Interfaces Figure 13: ModelBuilder to control processes 

Besides, the geoprocessing management tools have to be developed to keep the data-flow and geospatial 
processing services under control. These tools, like the ESRI Modelbuilder [10], figure 13, “provides a 
graphical modeling framework for designing and implementing geoprocessing models that can include 
tools, scripts, and data. Models are data flow diagrams that link together a series of tools and data to create 
advanced procedures and work flows. ModelBuilder is a productive mechanism to share methods and 
procedures with others within, as well as outside, your organization.” 

A next step is the adaptation of sensor-webs within this kind of geospatial research. Mark Reichardt [11] 
states the possibilities at the website of Geospatial Solutions: According to Kevin A. Delin of NASA's Jet 
Propulsion Laboratory, "the Sensor Web concept enables spatio-temporal understanding of an environment 
through coordinated efforts between multiple numbers and types of sensing platforms, both orbital and 
terrestrial, both fixed and mobile. Each of these platforms, communicates with its local neighborhood of 
sensors and thus distributes information to the instrument as a whole. The Sensor Web is to sensors what 



the Internet is to computers, with different platforms and operating systems communicating by way of a set 
of robust protocols."  

4 CONCLUSIONS 
 

Within this paper we have focused on the potential and requirements of GIS-supported satellite radar 
deformation monitoring. First of all it should be concluded that deformation monitoring using radar 
interferometry reaches a higher level of precision as it can detect sub-mm/year subsidence of permanent 
scatters. However, as this information becomes available it introduces a need to investigate a large range of 
physical mechanisms that may play a role in the deformation. A wide range of information sources 
expresses these mechanisms, i.e. water management, local shallow and deep geology, construction 
foundations, meteorology, geodetic observations, photography, etc. To understand the impact of a physical 
driving mechanism on the deformation measured, these information sources should be available for 
exploration and analysis by visual interaction and interactive visualization as offered by geographical 
information systems.  

We recommend a proper adoption of the geo-information infrastructure within this kind of geo-spatial 
research. When basic or authentic geo-data sets are available in an open, interoperable environment, one 
can focus on the systematic and recursive routine study needed to show a relationship between the 
examined deformation and the driving mechanisms. The computation itself should also be as open and 
clear as possible, which can be reached by the use of geo-processing services and schematize the 
calculations within a kind of a model builder. By publishing not only the results of the research, but also 
the steps undertaken to get these results and the possibility to rerun the model with other data a real 
understanding of the observed deformations will be come insight. 
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