
Delft Object-oriented Radar Interferometric Software
User’s manual and technical documentation

Version: v4.02

Delft Institute of Earth Observation and Space Systems (DEOS)
Delft University of Technology



Preface

This document describes the Doris Software for Interferometric SAR processing. It is compliant with Doris
v4.02. This manual contains technical documentation and information that is required for running the soft-
ware. We try to be as complete as possible, but some chapters may be very brief in the description. Please
report any incompleteness in the documentation or the source code. The latest information on the Doris soft-
ware can always be found on the internet: http://enterprise.lr.tudelft.nl/doris/ .

Doris is freely available to the scientific community. The conditions of use for the Doris software are as follows.

1. Doris is a scientific-purpose software and cannot be commercialized, nor can parts or products of it
be commercialized. Parties interested in using Doris or its products for any commercial purposes are
requested to contact Prof.Dr. Ramon Hanssen of DEOS (r.f.hanssen@tudelft.nl)

2. Our version of the software is the only official one. Please do not distribute the Doris software to third
parties, instead refer to the Doris home page. This in order to guarantee uniformity in the distribution of
updates and information.

3. Delft University of Technology is not responsible for damage of any kind caused by errors in the software
or in the documentation.

4. Users are very welcome to extend the capabilities of the Doris software by implementing new algorithms
or improving the existing ones. It is intended that if new software is developed based on Doris, that this
also is made available for free to the other users (through us).

5. We would appreciate if any addition or modification of the software would be announced first to us, so
that it can be included in the official (next) version of the software.

6. Publications that contain results produced by the Doris software should contain an acknowledgment.
(For example: The interferometric processing was performed using the freely available Doris software
package developed by the Delft Institute of Earth Observation and Space Systems (DEOS), Delft Uni-
versity of Technology. or include a reference to: Bert M Kampes, Ramon F Hanssen, and Zbigniew
Perski. Radar interferometry with public domain tools. In Third International Workshop on ERS SAR
Interferometry, ‘FRINGE03’, Frascati, Italy, 1-5 Dec 2003, page 6 pp., 2003.

This document is typeset in LATEX2e.

Delft, December 2008.

ii



Contents

Preface ii

1 Introduction 2
1.1 Overview of the InSAR Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Processing order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 General considerations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Inputfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Outputfiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Outline of this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 General Cards 10
2.1 General Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Example General Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 M READFILES 14
3.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Changes for X86 platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 M PORBITS 17
4.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 M CROP 20
5.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 M SIMAMP 22
6.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 M TIMING 25
7.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8 M OVS 28
8.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 S READFILES 30
9.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iii



10 S PORBITS 31
10.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 S CROP 32
11.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

12 S OVS 33
12.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

13 COARSEORB 34
13.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
13.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

14 COARSECORR 36
14.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
14.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

14.3.1 Method magspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
14.3.2 Method magfft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

15 M FILTAZI 39
15.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
15.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
15.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

16 S FILTAZI 43

17 FINE 44
17.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
17.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
17.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17.3.1 magspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
17.3.2 oversample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
17.3.3 magfft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

18 RELTIMING 48
18.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
18.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
18.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 DEMASSIST 50
19.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
19.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
19.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

20 COREGPM 53
20.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
20.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
20.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

21 RESAMPLE 61
21.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
21.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
21.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

21.3.1 Output formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
21.3.2 Interpolation Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

iv



22 FILTRANGE 66
22.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
22.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
22.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

22.3.1 Method: porbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
22.3.2 Method: adaptive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
22.3.3 Hamming filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

23 INTERFERO 73
23.0.4 NEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

23.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
23.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
23.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

24 COMPREFPHA 77
24.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
24.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

25 SUBTRREFPHA 80
25.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
25.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

26 COMPREFDEM 83
26.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
26.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
26.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

27 SUBTRREFDEM 87
27.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
27.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

28 COHERENCE 89
28.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
28.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
28.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

29 FILTPHASE 92
29.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
29.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
29.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

29.3.1 spatialconv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
29.3.2 spectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
29.3.3 goldstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

30 UNWRAP 99
30.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
30.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

31 DINSAR 102
31.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
31.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
31.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

31.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

32 SLANT2H 108
32.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
32.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
32.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

32.3.1 Method ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

v



32.3.2 Method rodriguez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
32.3.3 Method schwabisch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

32.4 Comparison of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

33 GEOCODE 117
33.1 Input Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
33.2 Output Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
33.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A What’s new? 122
A.1 Version 4.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 Version 4.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B Installation 124
B.1 Installation of Doris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.1.1 Installation of the Doris core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
B.1.2 Installation of the SARtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.1.3 Installation of the ENVISAT tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.1.4 Installation of the TERRASAR-X reader . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.1.5 Starting Doris ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.1.6 Installation of utility scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2 Additional programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.3 Running the Doris software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.4 Viewing the results of Doris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
B.5 Trouble shooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.5.1 General problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.5.2 Matrix class troubles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.5.3 Some notes on installation on SGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.5.4 Some notes on installation on Linux X86 . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.5.5 Some notes on installation on Window running Cygwin . . . . . . . . . . . . . . . . . . 133

B.6 List of files in archive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
B.7 List of routines + description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C Utilities 138
C.1 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.2.1 Installation of SARtools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
C.2.2 run script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.2.3 cpxfiddle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
C.2.4 cpx2ps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
C.2.5 phasefilt.doris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2.6 flapjack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2.7 cpxmult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2.8 cpxdiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.2.9 cpxconj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.2.10 floatmult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.2.11 wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.2.12 construct dem.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.2.13 doris.process-reset.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.3 Completes for tcsh users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

D Definitions 144
D.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
D.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
D.3 Interferogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
D.4 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

D.4.1 Computation of coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
D.4.2 Evaluation of polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

vi



D.5 (SAR) System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.5.1 Azimuth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
D.5.2 Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.6 Doppler, range and ellipsoid equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
D.7 Orbit interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
D.8 Format of the products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

E Matrix class 155
E.1 Matrix class functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

F Adding a module 158
F.1 Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
F.2 Adding a Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

1



Chapter 1

Introduction

This user’s manual guides you through the radar interferometric processing with the Doris software. A user
will be able to process ERS1/2, ENVISAT, JERS, RADARSAT, ALOS and TERRASAR-X data with the aid
of this manual. The data must be in Single Look Complex format (SLC). Doris is not a SAR processor, i.e.,
you cannot process/focus RAW radar data. The manual also contains implementation specifications which
can be helpful to a programmer for further development of Doris, or to understand WARNING and ERROR
messages.

1.1 Overview of the InSAR Processing

A high-level description of the InSAR processing is shown in Figure 1.1 where a division in four blocks has
been made. Block I depicts the preprocessing of the raw (radar and orbit) data to another format.

We won’t be concerned with the raw orbit data, but it is included in the flow chart for completeness. The Delft
precise orbits are used for ERS1/2 and Envisat, obtained via the getorb package (see, e.g., [Scharroo and Visser, 1998]).
The second block consists of the co-registration where the slave image is aligned with the master image, and
of the computation of the reference phase of the ellipsoid. In block III the interferometric products (complex
phase image and coherence map) are computed. Finally in block IV the endproducts (e.g., a DEM or a
deformation map) are computed.

IVIIII

REF.

PHASE

II

EPH.

GENERATION

DATA

PHASE

COH.

MAP

GEN.

INTERF.

IMAGE

END END

PROD.
PROD.PROD.

RAW

DATA

IMA-

PARA-

GES TERS

ME-

PARA-

TERS

RAW

SLC

ORBIT

CO-

REGI-

STRA-

TION

RADAR

ORBIT

SLC

 2

RAW

GEN.

ME-

ORBIT

GEN.

COREGISTRATION +
REFERENCE PHASE

RAW DATA
PROCESSING

INTERFEROMETRIC PRODUCT 
GENERATION

(END) PRODUCT

Figure 1.1: Coarse flow of the interferometric processing of SAR images.

2



The processing steps that are implemented in the Doris software are listed in the table below. Note that
UNWRAP is NOT directly implemented in Doris.

To run each step, these names must be used as arguments for the PROCESS card, as explained in Chapter
2. A specific algorithm (module, method) can be selected with the cards that are special to this step, see the
Chapters 3 to 33.

PROCESS (Chapter) Description
M READFILES (3) Read the processing parameters from the SLC files for the

master image.
M PORBITS (4) Retrieve the precise Delft orbital data records with the getorb

package.
M CROP (5) Write the SLC data from paf format to disk in the ’raw’ (pixel

interleaved 2b/2b complex short integer) format.
M SIMAMP (6) Simulation of amplitude image based on DEM.
M TIMING (7) Estimation of timing error based on correlation between mas-

ter amplitude and simulated amplitude.
M OVS (8) Oversampling of the master crop.
S READFILES (9) See M READFILES.
S PORBITS (10) See M PORBITS.
S CROP (11) See M CROP.
S OVS (12) See M OVS.
COARSEORB (13) Compute the translation between master and slave with the

orbits (precision 30 pixels).
COARSECORR (14) Compute the translation between master and slave on pixel

level by correlation technique.
M FILTAZI (15) Spectral filter for master image in azimuth (line) direction.
S FILTAZI (16) Spectral filter for slave image in azimuth (line) direction.
FINE (17) Compute translation vectors over the total image on sub-pixel

level.
RELTIMING (18) Estimation of relative timing error between master and slave

based on fine coregistration.
DEMASSIST (19) DEM assisted coregistration.
COREGPM (20) Compute the actual transformation (2d-polynomial) model for

the alignment of the slave on the master image.
RESAMPLE (21) Resample the slave image according to the transformation

model of the coregistration.
FILTRANGE (22) Spectral filter for master and slave image in range (pixel) di-

rection.
INTERFERO (23) Compute the (complex) interferogram.
COMPREFPHA (24) Compute the reference phase of the ellipsoid to be subtracted

from the interferogram (polynomial).
SUBTRREFPHA (25) Subtract the reference phase of the ellipsoid from the interfer-

ogram.
COMPREFDEM (26) Compute the reference phase of a DEM to be subtracted from

the interferogram.
SUBTRREFDEM (27) Subtract the reference phase of the DEM from the interfero-

gram.
COHERENCE (28) Compute the (complex) coherence map.
FILTPHASE (29) Filter the the interferogram.
UNWRAP (30) Unwrap the interferogram.
DINSAR (31) 3/4 pass differential interferometry.
SLANT2H (32) Compute the heights of the pixels in the radar coded system.
GEOCODE (33) Geocode the pixels (convert pixels from the radar coordinate

system to a earth fixed reference system.)

3



1.1.1 Processing order

The processing order is not restricted, but, in general, the output of a step is the input for the next. The
following flowchart (Figure 1.2) shows the general processing order. The black processing steps are obligatory
to obtain a geocoded interferogram as end product. The dark gray steps are highly recommended, whereas
the light gray steps are optional. Obviously, the modular structure of Doris enables the user to specify its own
processing chain. The most important (intermediate) products are indicated on the right-hand side.

Obligatory step

Recommended step

Optional step

6 M_SIMAMP

9 S_READFILES

11 S_CROP

14 COARSECORR

13 COARSEORB

15 M_FILTAZI 16 S_FILTAZI

17 FINE

20 COREGPM

21 RESAMPLE

18 RELTIMING

23 INTERFERO

24 COMPREFPHA

25 SUBTRREFPHA

26 COMPREFDEM

27 SUBTRREFDEM

28 COHERENCE

29 FILTPHASE

30 UNWRAP

32 SLANT2H

33 GEOCODE

31 DINSAR

7 M_TIMING

19 DEMASSIST

22 FILTRANGE

Interferogram

Resampled slave

Oversampled crops

Crops

Unwrapped interferogram

Geocoded interferogram

Interferogram

Interferogram 

Coherence image

8 M_OVS 12 S_OVS

Processing steps Products

(subtracted reference phase)

(subtracted reference DEM)

10 S_PORBITS

3 M_READFILES

4 M_PORBITS

5 M_CROP

Figure 1.2: Processing flowchart for Doris. The black processing steps are obligatory to obtain a geocoded
interferogram as end product. The dark gray steps are highly recommended, whereas the light gray steps are
optional. Obviously, the modular structure of Doris enables the user to specify its own processing chain. The
most important (intermediate) products are indicated on the right-hand side.

4



1.2 General considerations and conventions

In this section some important definitions are described that are used in the Doris software. This will clarify
the terminlogy used. The general set up of the input file and output files is described as well.

After compilation with the Makefile, the executable is named: ”doris”. In this document therefor this name is
used to refer to the executable. The command line options are:

• doris -ver
return version number.

• doris -h
return help (system call to shell script named helpdoris).

• doris [file]
run, use input in ”file” (default: ”inputoptionsfile”.

It is advised also to compile an executable ”doris.debug” (with the Makefile). This version is somewhat slower
and more verbose, but it can be used if something seems to go wrong with the normal executable, and it is
not clear what. See also Annex B. We advice to use the utility scripts to generate input files and to run the
processor.

Conventions are:

• We use the term lines to refer to the azimuth direction (slow time), and pixels for the range direction
(fast time). (A pixel might also refer to an element, which will be clear from the context.) In the source
code we frequently use the term azimuth buffers and range blocks.

• Our convention is to use first lines , second pixels , e.g., for the order of input arguments. The line
direction (azimuth) corresponds to the vertical (y). The pixel direction (range) corresponds to the hori-
zontal (x). Note that other software may use x before y.

• The first line (pixel) of an image is indexed as 1 (this may be a bit unusual). (In the software, the first
index of an image (in a matrix) is equal to 0. To index a matrix, use MAT(y,x), i.e., as in linear algebra,
Matlab, etc.)

• The name, format, and dimensions of the current master/slave/interferogram are stored in information
structs that are filled by reading the corresponding result files . The files do not have a header.

• Generally all coordinates are in the master (radar) coordinate system. The first and last line are given,
as well as multilook factors for both directions. If for example an interferogram is multilooked at the
generation with a certain factor and later on again at the subtraction of the reference phase, then the
first line is still the same, see Figure 1.3.

• In our view, the output files can only contain the results of one algorithm per step. So it is not possible
to re-run a step (for example with another algorithm) without deleting the previous result. New users
may be confused by this approach, but Doris should give an appropriate error message if it is attempted
to run a step twice.

• Temporary files are created during the processing. Their names always start with ”scratch”. If such files
are not removed by Doris, for example after an error in the processing, they can be savely removed by
a rm command.

In the logfile additional information is written that is not sent to standard out or the result files , such as
statistical information on a least squares estimate. (For example, we always inspect the correlation value for
step COARSE CORR, and the error between model and observations for reference phase computations in
the log file.)

5



PRINCIPLE OF RADAR COORDINATES and MULTILOOKING IN DORIS

1 2 3 4 5 6 7 8 9 10 11 12 13 14

linelo linehi

master grid

complex interferogram (0:14)
multilook = 4
numelements on disk = 3

multilook = 8
numelements on disk = 1

complex interferogram - refpha

Figure 1.3: Principle of multilooking.

1.2.1 Inputfile

There is one ascii input file containing cards and zero or more parameters that controls the processor. A
card is the first word on a line in the input file . The card and parameter(s) are delimited by blanks or tabs.
There are mandatory cards (such as STOP at the end) and optional cards (because there are defaults for
example for a filename for the output, or cards like COMMENT.) In this document the mandatory CARDS are
in sans serif bold face, the optional CARDS are in normal style. Default parameters are underlined, and [
optional ] parameters are between square brackets.

The input file consists of a header and a tail. In the header, the general cards are placed (see Chapter 2),
and in the tail the cards specific to a certain step are placed (described in the other chapters).

The order of the cards is not restricted (except the STOP card), though we advice to group them by processing
step. Blank lines are allowed in the input file , but the line counter will not function properly in that case (which
does not affect the processing in any way). We advice to place a comment on otherwise empty lines.

If (accidently) a certain card is used more than ones, then a WARNING is generated and the latter one is
ignored (this behavior is not guaranteed, not true for PROCESS cards).

The case of cards and parameters is not restricted. We advice to use UPPER case (except for comment or
c) for cards and lower case for parameters.

Text after the last expected parameter is ignored. Be careful with putting comments in like this if the number of
parameters may be varied for a certain card. We normally do not make one big input file , but we use several
small ones, for a group of processing steps. See also the run file in Annex B.

The examples in the next chapters will make this more clear. All keywords are described in this manual,
and also in the interactive helpdoris script, and in the run script. It can occur that some keywords are not
mentioned in the latter two. To obtain all possible cards, give the command:

grep keyword readinput.cc | grep else

1.2.2 Outputfiles

There are three ascii output files : one for (results of) processing steps specific to the master, one for the
slave, and one for the rest of the processing (the ’products’). These files are referred to as master, slave
and product result file (parameter files). For example, the wavelength of the sensor and the filename of
the master image can be found in the master result file (and for the slave parameters in the slave result
file ), while coregistration parameters, which aren’t unique to a particular image, can be found in the products

6



result file . These output files serve as input for Doris for running later steps. (Of course, a step also can
generate binary data output. This is described in the following chapters.)

The result files all consist of a header and a tail, which grows with the processing.

In the header some general information and an overview of the processing is given with process control
flags . (These flags do not imply a certain order.) By convention, each processing step can be run only once
(0 or 1 in the process control flag ), to avoid confusion on the correct/latest results are. (This implies that a
result section in the tail has to be deleted, and the process control flag reset to 0, before running a step a
second time.)

In the (growing) tail the results of the processing is stored. The result files are read again and the read
parameters are used in the further processing. (In order to trick Doris to use other parameters then the ones
that result from a previous processing step, simply edit the result file , e.g, in order to coregister complex
interferograms.)

For the master output file the header with the information and the process control flags looks like:

=================================================== ==
MASTER RESULTFILE: master.res

Created by:
InSAR Processor: Doris (Delft o-o Radar Interferometric So ftware)
Version: Version 4.01 (19-DEC-2008) (optimal)
FFTW library: used
VECLIB library: not used
LAPACK library: not used
Compiled at: Dec 19 2008 17:26:52
By GNU gcc: 4.1.4
File creation at: Fri Dec 19 19:08:21 2008

--------------------------------------------------- -----
| Delft Institute of Earth Observation and Space Systems |
| Delft University of Technology |
| http://enterprise.lr.tudelft.nl/doris/ |

--------------------------------------------------- -----

Start_process_control
readfiles: 0
precise_orbits: 0
crop: 0
sim_amplitude: 0
master_timing: 0
oversample: 0
filt_azi: 0
filt_range: 0
NOT_USED: 0
End_process_control

The last flag (NOT USED) is reserved for future use. In the slave result file the following line (and processing
step) is extra :

resample: 0

and following lines are missing:

sim_amplitude: 0
master_timing: 0

The products result file is build up in the same manner. The process control flags in the header of the
products result file are:

[SKIP] [SKIP]

7



Start_process_control
coarse_orbits: 0
coarse_correl: 0
fine_coreg: 0
timing_error: 0
dem_assist: 0
comp_coregpm: 0
interfero: 0
coherence: 0
comp_refphase: 0
subtr_refphase: 0
comp_refdem: 0
subtr_refdem: 0
filtphase: 0
unwrap: 0
slant2h: 0
geocoding: 0
dinsar: 0
NOT_USED2: 0
End_process_control

[SKIP] [SKIP]

The latter flag is reserved for future use. As already mentioned, after the process control flags the results
of a (successfully ran) processing step are appended.

A section of the tail always starts with some lines like

*************************************************** ****************
* _Start_coarse_orbits:

*************************************************** ****************

After which the results for this processing step follow. A section always ends with a statement shown below.
(This End .step: NORMAL statement is important because the status of the process flag in the header is
updated with it.)

*************************************************** ***************
* End_coarse_orbits:_NORMAL

*************************************************** ***************

Note that not all steps that are in the process control flags actually have to be implemented in Doris for the
moment. (Unwrapping, extra flags)

Since only one result section is allowed for every processing step, it is not possible to re-run a certain step
without editing the result file . The process control flag in the header has to be reset, and the total section
in the tail (from Start step to END: NORMAL) has to be deleted, or commented out.

If the section is not deleted, Doris will likely exit, but if not, the further processing may be affected, because
wrong values may be used (i.e., read from the result file ).

It is of course possible to change the results (parameter values, for example correlation value for an estimated
offset) in the result files , so that the altered value is used in the further processing. However, if you change
the strings describing the output Doris will likely protest (i.e., hang or exit).

1.3 Outline of this document

In Chapter 2 the general purpose cards are described. All further chapters describe a certain processing
step. The Chapter name is equal to the argument of the PROCESS card that should be given in the input file
to switch on the processing of that step.

8



The step is introduced at the beginning of the chapter. In the first section the input cards are described and
also an example input file is given. In the second section the output is described, as well with an example.
In most chapters there is also a third section describing the implementation.

Cards that are mandatory are written in boldface sans serif. Optional cards are in normal sans serif font.
Parameters are notated in italic, and defaults are underlined. Optional parameters are in between square
brackets.

The definitions used in the software are described in Annex D. Here, amongst others, the baseline definition,
the file formats used, and normalization of polynomials are described.

In Annex B the instalation of Doris is described. It also contains a small trouble shoot section.

Annex C shortly describe (third party) packages that should be installed for a complete version of the Doris
software. Also some utilities we have developed are described.

The matrix class which comes with the Doris software is described in Annex E. This matrix class can be freely
used in other non-commercial programs.

Finally, Annex F describes how to add a module to the Doris software. Extention of the software is encouraged.

9



Chapter 2

General Cards

This chapter deals with input cards that are not specific for a certain processing step, the general input cards.
For example, such a card could specify whether you like to do batch processing or interactive processing.
These cards are best placed at the start of the input file .

They do not generate any specific output. An example of the (header of the) input file is given in section 2.2.

2.1 General Input Cards

\\ [ ... ]
After this card everything up to a newline is ignored. A space after \\ is not required.

# [ ... ]
After this card everything up to a newline is ignored. A space after # is not required.

C [ ... ]
After this card everything up to a newline is ignored. A space after this card is not
required.

COMMENT [ ... ]
After this card everything up to a newline is ignored. A space after this card is not
required.

SCREEN DEBUG | INFO | PROGRESS |WARNING | ERROR
This card controls the level of standard output. It is recommended to start with this card,
since it is in effect only after it is read.

BEEP OFF |WARNING | ERROR | PROGRESS |ON
This card controls the level of beeping.

BATCH [ ON | OFF ]
Specifies to run the processor in non-interactive mode. If this card is omitted then the
processing is done in interactive mode, asking to press a key before each step. BATCH
can be specified without arguments, which means non-interactive processing. (If there
is an ONLYPROCESS card present, this forces BATCH ON).

10



OVERWRITE [ ON | OFF ]
Specifies whether or not to overwrite existing files. If this card is omitted files are not
overwritten; if no parameter is given it defaults to ON (do overwrite).

PREVIEW [ OFF |ON | XV ]
Specifies whether or not to generate SUNraster preview files with the help of the utility
program cpxfiddle (download and install seperately from Doris website.). Default is OFF
since this program may not be installed. If ON, shell scripts are created in the working
directroy which create the SUNraster file if run. If XV is given, also the command is
given to view the generated file with xv.

LISTINPUT [ ON | OFF ]
Specifies if the input file has to be copied to the logfile. If this card is omitted then input
is not copied. if no parameter is given it defaults to ON (do copy).

MEMORY 500
With this card the user can indicate the maximum amount of memory to be used by the
processor (in Megabytes). It is advised setting this lower than the maximum available
amount, because it may be somewhat inaccurate (up to a factor 2, particularly due to
temporary copies created by the copy constructor). A lot of routines actually try to use
a minimum of memory, even if this card is set to a large value.

PROCESS M READFILES |M PORBITS |M CROP |M SIMAMP |
M TIMING |M OVS |M FILTAZI | FILTRANGE |
S READFILES | S PORBITS | S CROP | S OVS |
S FILTAZI | COARSEORB | COARSECORR | FINE |
RELTIMING | DEMASSIST | COREGPM | RESAMPLE |
INTERFERO | COMPREFPHA | SUBTRREFPHA |
COMPREFDEM | SUBTRREFDEM | COHERENCE |
FILTPHASE | DINSAR | UNWRAP | SLANT2H | GEOCODE

With this card the processing steps that have to be processed can be switched on.
More than one PROCESS card can be specified in the input file . An ONLYPROCESS
card overrides possible PROCESS cards. Description of these steps can be found in
the introduction, chapter 1, and in the following chapters. At least one PROCESS or
ONLYPROCESS card is mandatory.

ONLYPROCESS same arguments as PROCESS card
With this card a processing step that has to be processed can be switched on. Overrides
possible PROCESS cards. This card also automatically switches: BATCH ON. At least
one PROCESS or an ONLYPROCESS card is mandatory.

LOGFILE log.out
Output filename for the logfile.

M RESFILE master result.out
Output filename for the master result file .

S RESFILE slave result.out
Output filename for the slave result file .

I RESFILE interferogram.out
Output filename for the products result file .

ORB INTERP POLYFIT [ [ DEGREE ]] | [ SPLINE ]

11



Orbit interpolation method. Defaults to a polynomial of degree numberofdatapoints-
1, but smaller than degree 5 (order 5). Optionally, the DEGREE can be given
(¡=numberofdatapoints-1). The x,y,z are independently interpolated, the velocities are
estimated from the position. If method SPLINE is selected, natural cubic splines are
used. This may be inaccurate if there are only a few orbit datapoints. (default interpola-
tion, not approximation for polyfit is used to go smoothly through the datapoints since the
points do probably not contain noise since they are already the result of an orbit propa-
gator somewhere. It is not adviced really to use a DEGREE smaller than the maximum
possible, except if it gets too large to avoid oscillations.)

DUMPBASELINE 0 0
Dump the baseline parameters for a grid of 0 lines by 0 pixels as INFO to stdout. The
baseline is only evaluated after the orbits are known. The perpendicular baseline to the
reference ellipsoid is also computed as a 2D polynomial of degree 1. And also theta as
function of azimuth line and range (though it hardly varies over azimuth).

HEIGHT 0.0
Average terrain height above WGS84. This can be used in future to correct the unwrap-
ping for the integration constant. Now it is only used if GEO card is used for cropping.

TIEPOINT lat lon hei
Coordinates of a point in lat lon hei in WGS84. For now, only informational. The point is
converted to pixel/line coordinates, and the interferometric phase is computed, etc.

M RG T ERROR [ 0.0 ]
Range timing error for master. One-way in seconds. Use this card for example to cali-
brate the geo-referencing using a corner reflector with known coordinates. Can also be
used to “shift” the DEM with respect to the interferogram in step COMPREFDEM. A shift
of one (non-mulitlooked or oversampled) pixel corresponds to a one-way timing error
of 1/(2*RSR). For ers this is approximately M RG T ERROR=0.00000002637 seconds.
By multiplication of the signal velocity speed of light (3e8) this amount in seconds can
be converted to the slant-range resolution (i.e., pixel posting) of 7.9 meter.

M AZ T ERROR [ 0.0 ]
Azimuth timing error for master. Use this card to account for timing errors in azimuth
direction. Card can be used to shift a DEM in azimuth direction. Note that such a shift
may indicate incorrectly estimated Doppler.

S RG T ERROR [ 0.0 ]
Range timing error for slave. See M RG T ERROR. Since the geometry of the interfer-
ogram is related to the master this card has not a large effect.

S AZ T ERROR [ 0.0 ]
Azimuth timing error for slave. See M AZ T ERROR. Since the geometry of the interfer-
ogram is related to the master this card has not a large effect.

STOP
After this card the input file is no longer interpreted. This card is mandatory.

2.2 Example General Input Cards

c *************************************************** **************

12



c * Doris \inputfile generated by: run at: Nov 27, 2000 (Monday) *
c *************************************************** **************
c *
c * Filename: Inputfiles/input.s_initial
c * Author: Doris User
c * Master: 23185
c * Slave : 03512
c * Baseline: 170 m
c * Remarks: Test: s2h routine (exact)
c *
c *************************************************** **************
c

c
comment ___general options___
c

SCREEN debug // level of output to standard out
MEMORY 150 // MB
OVERWRITE // overwrite existing files
BATCH // non-interactive

c LISTINPUT OFF // prevents copy of this file to log
c

PROCESS m_readfiles // read parameters
PROCESS m_porbits // obtain precise orbits
PROCESS m_crop // crop data to internal format

c //
c //
comment ___the general io files___ //
c //

LOGFILE log.out // log file
M_RESFILE master.out // parameter file
S_RESFILE slave.out // parameter file
I_RESFILE interferogram.out // parameter file

c //

[SKIP][SKIP]
...
... more cards specific to step specified by (ONLY)PROCESS c ards,
... see next chapters for details on these cards.
...
[SKIP][SKIP]

STOP

Note that ”//” is not a delimiter for comments, text after the last expected parameter is simply ignored.

13



Chapter 3

M READFILES

In this chapter the processing of step M READFILES is described. It can be selected by a PROCESS
M READFILES line in the input file . This is the first step if the ERS1/2 SLC images are processed.

The SLC leader, volume and (header of the) data file are read, and relevant parameters are written to the
master result file specified by the general card M RESFILE. These parameters are used in the further
processing. Currently, ERS1/2 SLC and ENVISAT SLC files can be read. If the output of this step is mimicked,
Doris can be tricked to process the other steps. The sole purpose of this step is to create result file where
relevant parameters are stored (PRF, wavelength, etc.), also see the example in the next section.

3.1 Input Cards

M IN METHOD ERS | ASAR (ENVISAT) | RSAT (RADARSAT) |
ATLANTIS | JERS | ALOS | TSX (TERRASAR-X)

Method selector to read ERS, ENVISAT, RADARSAT, JERS, ALOS or TERRASAR-X
header. Note that both master and slave need to be acquired by the same sensor
in principle. JERS simply uses ERS programs, ATLANTIS (sar processor) uses the
ceos reader for RSAT, and will write this in the Product Type Specifier field. RSAT
must be tested, problems may be orbit data. In later steps, the Product field is read,
and the CROP step uses the appropriate function automatically (Envisat, ERS/JERS,
RSAT/ATLANTIS).

M IN DAT filename
The filename of the SLC data file. This is the only file required for method ASAR (EN-
VISAT).

M IN LEA filename
The filename of the SLC leader file. Not used for method ASAR (ENVISAT).

M IN VOL filename
The filename of the SLC volume file. Not used for method ASAR (ENVISAT) and TSX
(TERRASAR-X).

M IN NULL filename
The filename of the SLC null file. This may be a dummy name since it is not used.

14



An example of the input cards for this step is given below. This example can be inserted in the general cards
described in Section 2.2.

c
c
comment ___READFILES___
c

M_IN_METHOD ERS
M_IN_VOL /cdrom/scene1/vdf_dat.001 // name of volumefile
M_IN_LEA /cdrom/scene1/lea_01.001 // name of leaderfile
M_IN_NULL dummy // name of nullfile
M_IN_DAT /cdrom/scene1/dat_01.001 // name of datafile

3.2 Output Description

The process control flag at the start of the master result file is switched to 1 at successful exit.

readfiles: 1

Example of output of this step (in master result file ). (The positioning data of the platform from the leader
file has been deleted in this example. This happens automatically after step M PORBITS (getting the precise
orbits)). This output is appended to the master result file .

*************************************************** ****************
* _Start_readfiles:

*************************************************** ****************
Volume file: /cdrom/scene1/vdf_dat.001
Volume_ID: 1
Volume_identifier: 0004093800014027
Volume_set_identifier: 19950830 9491991
(Check)Number of records in ref. file: 26558
Product type specifier: PRODUCT:ERS-1.SAR.SLC
Location and date/time of product creation: IPAF 24-07-1998
Scene identification: ORBIT 21567 DATE 30-08-95
Scene location: FRAME 2781 LAT:40.94 LON:14.03
Leader file: /cdrom/scene1/lea_01.001
Scene_centre_latitude: 40.9380000
Scene_centre_longitude: 14.0270000
Radar_wavelength (m): 0.0566660
First_pixel_azimuth_time (UTC): 30-AUG-1995 09:49:20.4 53
Pulse_Repetition_Frequency (actual, Hz): 1679.9020000
Total_azimuth_band_width (Hz): 1378.0000000
Weighting_azimuth: HAMMING
Xtrack_f_DC_constant (Hz, early edge): 437.9780000
Xtrack_f_DC_linear (Hz/s, early edge): 7154.0000000
Xtrack_f_DC_quadratic (Hz/s/s, early edge):-380000000. 00000
Range_time_to_first_pixel (2way) (ms): 5.5458330
Range_sampling_rate (leaderfile, MHz): 18.9624680
Total_range_band_width (MHz): 15.5500000
Weighting_range: HAMMING
Datafile: /cdrom/scene1/dat_01.001
Number_of_lines_original: 26183
Number_of_pixels_original: 4900

*************************************************** ****************
* End_readfiles:_NORMAL

*************************************************** ****************

Note that Product specifies ”ASAR” for ASAR, which is used later.

15



A number of these lines is only for your information. The lines after Leader file: are used for the further
processing (except Weighting identifiers). These strings may not be altered. We encountered a problem once
when there was a blank in the UTC time, instead of a zero, but this should be fixed.

The logfile shows more details. Also some information is echoed to the screen (as ”INFO: ..”), such as the
Doppler centroid frequency, evaluated at some ranges, the corners of the images in latitude longitude, etc.

Defaults for parameters (slcimage.cc; Doris can still crash if not correct, e.g., the approximate coordinates of
the scene):

wavelength = 0.0566660.; // [m] default ERS2
t_range1 = 5.5458330/2.0e3; // [s] one way, default ERS2
prf = 1679.902.; // [Hz] default ERS2
abw = 1378.0; // [Hz] default ERS2
rsr2x = 18.9624680 * 2.0e6; // [Hz] default ERS2
rbw = 15.55e6; // [Hz] default ERS2

3.3 Implementation

Three basic data formats are supported: CEOS (ERS/JERS/ALOS/RADARSAT), N1 (ENVISAT), and COSAR/XML
(TERRASAR-X). By specifying the M IN METHOD the correct reader is selected.

3.3.1 Changes for X86 platforms

Version 2 4 onward can be (easily) compiled on Linux systems. For little endian machines like (intel) PC’s this
means the byte order is different. Since the record length in the leader, volume, and data file are stored as
B4 (4bytes unsigned integers), we had to use the function ntohl, see the manual pages. routines readvolume,
readleader, readdat.

Also the SLC data itself in the datafile is stored as 2x 2B short signed integer byte data. (real part, imaginary
part, real, imaginary, real, imag, ...). We transform the data that is read from the data file with the function
htons if X86PROCESSOR is defined (see the Makefile or source code) for more information.

16



Chapter 4

M PORBITS

In this chapter the step M PORBITS is described. This step should be run after READFILES, because in that
step the azimuth time is written to the master result file from from the SLC leader file.

We use the DEOS fortran program getorb for obtaining the precise orbits. (This program has to be installed
separately, see http://www.deos.tudelft.nl/ers/precorbs/ or [Scharroo and Visser, 1998].) This
step actually is only a system call to getorb, and converts the output to a 4 column table: secofday,x,y,z.

It requires the Orbital Data Records (ODR files) to be in an archive directory. The arclist file (which should be
downloaded together with the ODR archives) has to be present in this directory. The ODR files have to be
untarred and unzipped as from version 2.5.

This step introduces a section in the result file where the ephemerides are placed, and it deletes the
ephemerides from the SLC leader file, obtained by the processing step M READFILES (if there was such
a section). The ephemerides (x,y,z) span the time 4 seconds before the first line and 4 seconds after the last
line by default. The time is, and should be, in seconds of day . The time interval is 1 second by default. Natural
cubic splines are used for interpolation, and the boundary conditions may affect the interpolation if only a few
datapoints are used, e.g., 5 points with a time interval of 30 seconds. We nowadays use a time interval of 30
second, and approximtely 21 points. This implies that only spline (degree 3 piecewice polynomial) is used for
the whole image, which gives better results for, e.g, reference phase computation. The interpolation errors in
Doris are probably due to interpolation of interpolated values of getorb, which output format is in 3 digits.

If you want to use other ephemerides you can simply insert them in the result file in the format described in
section 4.2. You will have to correct the number of POINTS in the result file . Note that the orbit system is
WGS84 (only).

4.1 Input Cards

M ORBDIR directory name
the tar archive directory name for the Delft Orbital Data Records.

M ORB INTERVAL 1
Time in seconds between ephemerides.

M ORB EXTRATIME 3

17



Time in seconds before first and after last line to output ephemerides. Since interpola-
tion is done with natural cubic splines, it is advised to have at least 3 extra data points
before the first and after the last line. To use a single polynomial of degree 3 for in-
terpolation of the orbit for the full scene, select a time interval of 20 seconds, and, for
example, extra time of 200 seconds.

M ORB DUMP delta t
Write interpolated orbit to ascii output file ”masterorbit.dat”. With delta t seconds
interval between ephemerides. Time interval between t 0 and t N of the precise
ephemerides. output is: t,x,y,z,xdot,ydot,zdot,xddot,yddot,zddot. If compiled with

DEBUG defined, then also the matrices for spline interpolation are dumped.

Example of the cards for this step:

c
c
comment ___PORBITS___
c

M_ORBDIR /data/delftorbits/ERS1/
M_ORB_INTERVAL 1
M_ORB_EXTRATIME 6
c M_ORB_DUMP 0.1

4.2 Output Description

If a normal termination of this step, then the process flag at the start of the result file is switched to 1:

precise_orbits: 1

The output of this step is written in the section: precise datapoints. This section looks like the following. It is
important that all lines are present following NUMBER OF DATAPOINTS: 23.

*************************************************** ****************
* _Start_precise_orbits:

*************************************************** ****************
t(s) X(m) Y(m) Z(m)

NUMBER_OF_DATAPOINTS: 23
35360.000000 5161849.442 1645908.227 4678710.927
35361.000000 5166975.704 1645589.230 4673176.199
35362.000000 5172096.340 1645267.708 4667636.387
35363.000000 5177211.345 1644943.664 4662091.497
35364.000000 5182320.713 1644617.098 4656541.536
35365.000000 5187424.437 1644288.011 4650986.509
35366.000000 5192522.513 1643956.405 4645426.423
35367.000000 5197614.933 1643622.281 4639861.283
35368.000000 5202701.692 1643285.640 4634291.095
35369.000000 5207782.784 1642946.483 4628715.867
35370.000000 5212858.204 1642604.811 4623135.603
35371.000000 5217927.945 1642260.626 4617550.309
35372.000000 5222992.002 1641913.928 4611959.992
35373.000000 5228050.368 1641564.720 4606364.658
35374.000000 5233103.038 1641213.002 4600764.313
35375.000000 5238150.007 1640858.775 4595158.964
35376.000000 5243191.267 1640502.040 4589548.615
35377.000000 5248226.814 1640142.800 4583933.273
35378.000000 5253256.642 1639781.054 4578312.945

18



35379.000000 5258280.744 1639416.805 4572687.636
35380.000000 5263299.115 1639050.053 4567057.352
35381.000000 5268311.750 1638680.800 4561422.100
35382.000000 5273318.642 1638309.047 4555781.886

*************************************************** ****************
* End_precise_orbits:_NORMAL

*************************************************** ****************

The time is in seconds of day. which can be computed as: fractional day * 60*60*24 or hours*60*60 + min*60
+ sec.

If card M ORB DUMP then an ascii file ”masterorbit.dat” is written with the computed t, x, y, z, xdot, ydot,
zdot, xddot, yddot, zddot.

4.3 Implementation

Based on the UTC time of the image and the PRF and number of lines, basically the program getorb is
called through a UNIX system call. Functions from the standard library ctime (or time.h) are used for the time
conversions. This call is echoed to the screen as DEBUG. The commands can be executed stand-alone as
well.

%getodr 950727094923,950727094945,1 /data/orbits/ERS2 .ARCS > dummyout
%
%(...read in ODR file name from dummyout (ODR.422))
%untar /data/orbits/ERS1.ARCS ODR.422

getorb 950727094923,950727094945,1 /data/delftorbits/ ERS1/ \
> scratchorbit

The ephemerides are first written to a dummy file (named ”scratchorbit”) and later placed in the result file
(without the velocity output, only t,x,y,z). It has been noted that sometimes this scratch file is not automatically
removed. This file can be savely removed by hand.

Natural cubic splines are used for the interpolation so it may be wise to have a short time-interval and some
data before the first and after the last line.

If there is a section with the ephemerides of the SLC leaderfile in the master result file , then this section is
removed.

In the routine splineinterpol, file utilities.c, where the coefficients are computed, NATURALSPLINE is de-
fined. This sets the boundary condition to use zero second derivative at the borders. Otherwise, the first
derivative is set to a specified value. This does not seem to make a big difference.

19



Chapter 5

M CROP

In this chapter the processing of step M CROP is described. This step normally is the third one that is run,
after M READFILES and M ORBITS. It requires the SLC data file on disk or cdrom. For ENVISAT, a utility is
called that does the work.

In this step the SLC datafile is put on disk in a raw (pixel interleaved, 2x2byte signed (short) integer complex)
format. (The reason for this step is that we normally work with the SLC images on cdrom, and that we want
to have the files on disk to perform operation requiring both the images. It also serves as a common format
for different input.)

A few checks are performed regarding the number of lines, which is written in the header of the SLC data file
as well as in the leader file. The image is read/written line by line, no data conversion takes place (though a
cutout can be made). If you are working on a little endian platform (X86 PC) then the data is converted from
big endian (which is the CEOS format).

5.1 Input Cards

M CROP IN filename
Filename of the SLC data file.

M CROP OUT master.raw
Filename of the raw data output file .

M DBOW linelow linehi pixellow pixelhi
Master output window. You can make a cutout of the image with this card. Hi values
larger than the size of the image are reset to the maximum. If card omitted it defaults to
total image. line/pixel 1 refers to the the first line/pixel.

M DBOW GEO lat 0 lon 0 height width
Master output window. Alternative to and overrides normal DBOW card. You can make
a cutout of the image with this card. latitude of the center pixel of the desired crop,
longitude (in decimal degrees, WGS84 system of orbit), then height, width in pixels. For
approximately square areas, heights should be a factor 5 of width for ERS.

Example input cards for this step:

c
c
comment ___CROP___

20



c
M_CROP_IN /cdrom/SCENE1/DAT_01.001
M_CROP_OUT Output/21066.raw
c M_DBOW 1 5000 1 1000 // linelow hi pixellow/hi
M_DBOW_GEO 52.6734 5.4342 10000 2000 // lat_0[deg], lon_0, height, width[pix]

5.2 Output Description

The process control flag at the start of the result file is switched to 1 at successful exit.

crop: 1

The output section in the result file will resemble the following.

*************************************************** ****************
* _Start_crop: master

*************************************************** ****************
Data_output_file: Output/21066.raw
Data_output_format: complex_short
First_line (w.r.t. original_master): 1
Last_line (w.r.t. original_master): 5000
First_pixel (w.r.t. original_master): 1
Last_pixel (w.r.t. original_master): 1000

*************************************************** ****************
* End_crop:_NORMAL

*************************************************** ****************

If the SLC data is already on disk, for example because the SAR processing was done, this section will have
to be simulated. (As well as the result from READFILES.) The format complex real4 is available.

Note that the byte order must be the same as the (host) platform order. This means that if data is copied from
big endian platforms, they have to be swapped. Use for example a dd command like:

dd if=/cdrom/file.slc of=file.slc conv=swab

or use gmt (-Zh for short, -Zf for float, see man pages):

xyz2grd /cdrom/file.slc -Zh -Sfile.slc

21



Chapter 6

M SIMAMP

In this chapter the processing of step M SIMAMP is described, where the amlitude of the master image
is simulated. This step requires an external digital elevation model (DEM) such as SRTM (Shuttle Radar
Topography Mission) elevation data. This step can be performed optionally to simulate the master amplitude
[Eineder, 2003] and should be done after the M CROP step. In the following step M TIMING, the synthetic
amplitude can be used to compute the absolute timing error of the master acquisition.

We compute the synthetic amplitude for a given master acquisition using orbital information and topographic
data. SRTM can be used to obtain the topography in 3 arcseconds (Near global: ∼ 90 m. at the equator)
or 1 arcsecond (USA only) resolution. The input DEM file must have the byte order of your platform in
order to extract correct elevation value, see SAM IN FORMAT option for details. The DEM should be in the
WGS84 system (same as the orbit ephemerides) The Doris distribution contains the utility construct dem.sh
to download and prepare SRTM data (see Section C.2.12).

6.1 Input Cards

SAM IN DEM filename
filename of input DEM (gtopo30). File is assumed to be stored in a raster. Major row
order. from North to South, line-by-line. See also internet links at Doris home page for
available DEMs.

SAM IN FORMAT I2 | I2 BIGENDIAN | R4 | R8
format of input DEM on file (signed short for gtopo30, or real4, or real8; input ma-
trix is raw binary data w/o header, endianness of host platform is assumed, except for
I2 BIGENDIAN).

SAM IN SIZE 6000 4800
Number of rows and columns of input DEM file. Default is set to tile w020n90.DEM.

SAM IN DELTA 0.00833333333333333333 [ deltalon ]
Grid spacing of input DEM in decimal degrees, latitude longitude. Default is equal
gridspacing, default set to tile w020n90.DEM.

SAM IN UL 89.995833333333333 -19.995833333333333333333
Coordinates of UL (upperleft) corner in decimal degrees, latitude [-90, 90] longitude
[-180, 180]. Default is set to tile w020n90.DEM. It is interpreted as max-latitude, min-
longitude in source.

SAM IN NODATA -9999

22



Identifier to ignore data in input DEM with this value. Default is set to tile w020n90.DEM.

SAM OUT FILE master.sam
Filename of the output simulated amplitude.

SAM OUT DEM filename
Request optional debug output to float file of input DEM per buffer, cut to the inter-
ferogram window. Info on these files is written as DEBUG. Default is set to dem-
crop sam.raw

Example input section:

c ___ ___
comment ___SIMAMP___
c
SAM_IN_DEM final_WAna.dem // input DEM
SAM_IN_FORMAT r4 // real4 format
SAM_IN_SIZE 3601 3601 // extend of the DEM(l,p)
SAM_IN_DELTA 0.000833333 0.000833333 // 3 arcseconds
SAM_IN_UL 40 27 // the center coordinates

// of the UL corner pixel
SAM_IN_NODATA -32768 // ignored value
SAM_OUT_FILE Outdata/18226.sam // synthetic amplitude
SAM_OUT_DEM Outdata/dem_sam.raw // cropped DEM for

6.2 Output Description

At successful exit the process control flag is switched on:

sim_amplitude: 1

The output (in the master result file ) looks like:

* _Start_sim_amplitude:

*************************************************** ****************
DEM source file: final_WAna.dem
Min. of input DEM: 11
Max. of input DEM: 2521
Data_output_file: Outdata/18226.sam
Data_output_format: real4
First_line (w.r.t. original_master): 1
Last_line (w.r.t. original_master): 29650
First_pixel (w.r.t. original_master): 1
Last_pixel (w.r.t. original_master): 4992
Multilookfactor_azimuth_direction: 1
Multilookfactor_range_direction: 1
Number of lines (multilooked): 29650
Number of pixels (multilooked): 4992

*************************************************** ****************
* End_sim_amplitude:_NORMAL

*************************************************** ****************

The output in the logfile is more verbose, specifying the results of the intermediate steps. Also go over the
standard out in case of problems, with the SCREEN set to DEBUG level.

23



Figure 6.1: The orginal multilooked amplitude of
the master image.

Figure 6.2: The simulated amplitude of the mas-
ter image.

6.3 Implementation

The simulation of master amplitude is computed in three steps:

First, the DEM is radarcoded to the coordinate systems of the master acquisition. For each DEM point, the
master coordinates and the look angle (θ) are computed and saved to temporary files. Both the master
coordinates and look angle are real valued.

Second, the look angle and topographic heights are interpolated to the integer grid of master coordinates.
A linear interpolation based on a Delaunay triangulation is used. The software package Triangle for the
Delaunay triangulation is kindly made available by Jonathan Shewchuk [Shewchuk, 1996, Shewchuk, 2002],
see also http://www.cs.cmu.edu/˜quake/triangle.html . The interpolated topographic height
and look angle are then used to compute the local incidence angle (θloc) for each point. Using the local
incidence angle we obtain the synthetic amplitude by

synthetic amplitude = sin(−θloc) + 1. (6.1)

The +1 is applied to obtain positive numbers.

Finally, the obtained simulated amplitude per master pixel are saved to a file and used in the M TIMING step
to obtain absolute timing error of the master acquisition.

24



Chapter 7

M TIMING

In this chapter the processing of step M TIMING is described. The absolute timing error between DEM and
the master is computed using the simulated amplitude and the result of the coarse coregistration. Therefore,
this step can only be run after the steps M CROP and M SIMAMP. The timing error in azimuth as well as in
range direction is estimated.

During the coregistration, the master is aligned with respect to the DEM based on the simulated amplitude
image, producing a single offset for the whole image. Because the resolution of a DEM is typically coarser
(e.g., SRTM3: 90 m) than that of a radar image and the radar (ground) resolution differs between azimuth
and range direction (e.g., ∼4 m in azimuth and ∼20 m in range for ERS1/2 and Envisat), the sensitivity in
coregistration differs between the two directions (measured in resolution cells). As a result, a non-square
correlation window may be more suitable. For example, for ERS1/2 we apply a 256 lines by 128 pixels
correlation window.

This step updates the master acquisition azimuth and range times, respectively. Therefore, it affects steps
whenever the master timing is used such as the coregistration using a DEM (DEMASSIST step) and the
computation of reference phases (COMPREFPHA and COMPREFDEM steps).

7.1 Input Cards

MTE METHOD magfft |magspace
Method selector for this step. Either perform the correlation computation on the magni-
tude images in the space or in the spectral domain.

MTE IN POS filename
Input filename for ASCII file with positions in original master system to place windows
for correlation computations.

MTE NWIN 16
Number of windows to be distributed over the total image to estimate the offset. Should
be at least 5 or so because the most consistent estimate is selected. This card is ignored
if MTE IN POS is set. Only 1 large window could be used, e.g., of size 1024x1024.

MTE WINSIZE 256 128
Size of the window in lines pixels. For method in space domain it defaults to 256 128
For method in space domain it is converted to odd numbers if necessary.

MTE ACC 32 32

25



ONLY for method in space domain. Accuracy to search within for maximum correlation.
For fft method it automatically equals half of the MTE WINSIZE. In case of magspace,
the DEM window size is extended by 2xMTE ACC.

MTE INITOFF 0 0
Initial offset for coarse coregistration. The given offsets will shift master over simulated
amplitude. Use for debuging: 0 0 by default

Example input cards for this step:

c ___ ___
comment ___COMPUTE MASTER TIMING ERROR___
c
c MTE_METHOD magfft // computes faster than magspace
MTE_METHOD magspace // default.
MTE_ACC 128 32 // only for magspace
MTE_NWIN 256 // number of large windows
MTE_WINSIZE 256 128 // rectangular window
MTE_INITOFF 0 0 // initial offset

7.2 Output Description

The process control flag at the start of the master result file is switched to 1 at successful exit.

m_timing: 1

Example of output of this step (master result file ).

*************************************************** ****************
* _Start_master_timing:

*************************************************** ****************
Correlation method : magspace (321,193)
Number of correlation windows used : 10 of 10
Estimated translation master w.r.t. synthetic amplitude ( master-dem):

Positive offsetL: master image is to the bottom
Positive offsetP: master image is to the right

Coarse_correlation_translation_lines : -1
Coarse_correlation_translation_pixels : 5
Master_azimuth_timing_error : 0.000595265 sec.
Master_range_timing_error : -1.31839e-07 sec.

*************************************************** ****************
* End_master_timing:_NORMAL

*************************************************** ****************

In the logfile some additional information is written such as estimated offset and correlation for each window
position. Estimated offsets equal to NaN are ignored during analysis.

7.3 Implementation

The master timing error is computed in three steps:

First for each window position, the (zero meaned) master amplitude window is shifted over the (zero meaned)
simulated amplitude and the correlation is obtained (see equation D.24) by computing all pointwise products
and dividing by the norms of the particular windows.

26



Second, we select the most frequently occurring line and pixel offset pair by searching for the highest fre-
quency of window offsets above the average correlation.

Finally, we convert the obtained integer line and pixel offset to the master timing error using the following
formulation

master azimuth timing error =
−(lines)

PRF
, (7.1)

master range timing error =
−(pixels)
2 · RSR

, (7.2)

where PRF is the pulse repetition frequency and RSR is the one-way resampling rate in Hz.

The algorithms which are used to compute correlation are the same as the ones used in the step COARSE CORR,
see the related chapter for details on the magspace and magfft methods.

27



Chapter 8

M OVS

In this chapter the processing of step M OVS is described. This step can be run optionally to oversample the
cropped data, and is done after M CROP (and optinally after M SIMAMP and M TIMING).

Range oversampling has been implemented by Raffaele Nutricato, who uses an oversampling factor of 4 in
range, for advanced processing in the multi-temporal analysis.

For PS type processing, factor two in both directions seems reasonable. This avoid aliasing in the spectrum
of the interferogram, which implies you can interpolate correctly in the interferogram.

8.1 Input Cards

M OVS OUT master ovs.raw
Filename of the oversampled data.

M OVS OUT FORMAT ci2
Output file format.

M OVS FACT RNG 1
Oversampling factor of output image in range (pixels).

M OVS FACT AZI 1
Oversampling factor of output image in azimuth (lines).

M OVS KERNELSIZE 16
Kernel size (sinc) used for oversampling.

Example input cards for this step:

c
c
comment ___OVS___

c
M_OVS_OUT Outdata/master_ovs.raw // output filename
M_OVS_OUT_FORMAT ci2 // output format

// image ci2 | cr4.
M_OVS_FACT_RNG 2 // range oversampling ratio
M_OVS_FACT_AZI 2 // azimuth oversampling ratio
M_OVS_KERNELSIZE 16 // interpolation kernel length

28



8.2 Output Description

The process control flag at the start of the result file is switched to 1 at successful exit.

oversample: 1

The output section in the result file will resemble the following.

*************************************************** ****************
* _Start_oversample: slave

*************************************************** ****************
Data_output_file: Outdata/slave_ovs.raw
Data_output_format: complex_short
First_line (w.r.t. original_image): 101
Last_line (w.r.t. original_image): 133
First_pixel (w.r.t. original_image): 991
Last_pixel (w.r.t. original_image): 1023
Multilookfactor_azimuth_direction: 1
Multilookfactor_range_direction: 0.25
Number of lines (multilooked): 33
Number of pixels (multilooked): 132
First_line (w.r.t. ovs_image): 101
Last_line (w.r.t. ovs_image): 133
First_pixel (w.r.t. ovs_image): 3961
Last_pixel (w.r.t. ovs_image): 4092

*************************************************** ****************
* End_oversample:_NORMAL

*************************************************** ****************

8.3 Algorithm

Based on description by Raffaele Nutricato who provided this code: In the code, look for:

//____RaffaeleNutricato START MODIFICATION SECTION 1

As I explained in the previous e-mail range oversampling is o btained
as convolution of the zero filled signal with a truncated sin c. The
loading of the image is performed line by line and consequently the
oversampling is performed line by line too.

In particular given an input signal:
Input signal: xxxx
and an oversampling ratio of let’s say 3
I first generate a zero-filled copy of the input signal:
zero-filled Input signal: x00x00x00x
then I convolve the zero-filled Input signal with the interp olation
kernel obtaining the output signal:
Output signal: x++x++x++x++
where +’s are the new samples.

Bert Kampes implemented the azimuth oversampling. In azimuth a 6 point raised cosine kernel is used. The
kernel is normalized. I also normalized the range kernel (typically 16 point sinc).

29



Chapter 9

S READFILES

In this chapter the processing of step S READFILES is described. It is the same as step M READFILES but
then for the slave image. See chapter 3 (M READFILES) for more information on this step.

9.1 Input Cards

S IN METHOD ERS | ASAR (ENVISAT) | RSAT (RADARSAT) |
ATLANTIS | JERS | ALOS | TSX (TERRASAR-X)

Method selector to read ERS, ENVISAT, RADARSAT, JERS, ALOS or TERRASAR-X
header. Note that both master and slave need to be acquired by the same sensor
in principle. JERS simply uses ERS programs, ATLANTIS (sar processor) uses the
ceos reader for RSAT, and will write this in the Product Type Specifier field. RSAT
must be tested, problems may be orbit data. In later steps, the Product field is read,
and the CROP step uses the appropriate function automatically (Envisat, ERS/JERS,
RSAT/ATLANTIS).

S IN DAT filename
The filename of the SLC data file. This is the only file required for method ASAR (EN-
VISAT).

S IN LEA filename
The filename of the SLC leader file. Not used for method ASAR (ENVISAT).

S IN VOL filename
The filename of the SLC volume file. Not used for method ASAR (ENVISAT) and TSX
(TERRASAR-X).

S IN NULL filename
The filename of the SLC null file. This may be a dummy name since it is not used.

30



Chapter 10

S PORBITS

In this chapter the processing of step S PORBITS is described. It is actually the same as step M PORBITS,
but then for the slave image. See chapter 4 (M PORBITS) for more detailed information on this step.

10.1 Input Cards

S ORBDIR directory name
the tar archive directory name for the Delft Orbital Data Records.

S ORB INTERVAL 1
Time interval between data points. Card M ORB INTERVAL has the same effect. It is
not possible to have a different S ORB INTERVAL.

S ORB EXTRATIME 3
Time before first line (and after last) for extra datapoints data points. Card
M ORB EXTRATIME has the same effect. It is not possible to have a different
S ORB EXTRATIME.

S ORB DUMP dt
Dump interpolated t,x,y,z to ascii file slaveorbit.dat.

31



Chapter 11

S CROP

In this chapter the processing of step S CROP is described. It is the same as step M CROP but then for the
slave image. See chapter 5 (M CROP) for more information on this step.

11.1 Input Cards

S CROP IN filename
Filename of the SLC data file.

S CROP OUT slave.raw
Filename of the raw data output file .

S DBOW linelow linehi pixellow pixelhi
Slave output window. You can make a cutout of the image with this card. If card omitted
it defaults to total image. line/pixel 1 refers to the the first line/pixel.

S DBOW GEO lat 0 lon 0 height width
Slave output window. Alternative to and overrides normal DBOW card. You can make
a cutout of the image with this card. latitude of the center pixel of the desired crop,
longitude (in decimal degrees, WGS84 system of orbit), then height, width in pixels. For
approximately square areas, heights should be a factor 5 of width for ERS.

32



Chapter 12

S OVS

In this chapter the processing of step S OVS is described. It is the same as step M OVS but then for the slave
image. See chapter 8 (M OVS) for more information on this step.

12.1 Input Cards

S OVS OUT slave ovs.raw
Filename of the oversampled data.

S OVS OUT FORMAT ci2
Output file format.

S OVS FACT RNG 1
oversampling factor of output image in range (pixels).

S OVS FACT AZI 1
oversampling factor of output image in azimuth (lines).

S OVS KERNELSIZE 16
Kernel size (sinc) used for oversampling.

33



Chapter 13

COARSEORB

This chapter describes the processing step COARSEORB. In this step the coregistration based on the orbits
of slave and master is computed with an accuracy of about 30 pixels (precise orbits). This is a fast way to get
the coarse offsets. Before the FINE coregistration however the step COARSECORR has to be run, in order
to get the coarse offsets within a few pixels. (FINE requires the initial estimated offset within a few pixels.)

The offset is defined in such a way that for a point P in the master with coordinates Pm(line,pixel) and the
same point in the slave image with (slave system) coordinates Ps(line,pixel) it holds:

Ps(l, p) = Pm(l, p) + offset(l, p) (13.1)

13.1 Input Cards

There are no input cards for this step. (i.e. the parameters/orbits are read from the master and slave result
file .)

13.2 Output Description

Since this normally is the first step that is not specific to master nor slave, a products result file is created.
The process control flag at the start of this file is switched to 1 at successful exit.

coarse_orbits: 1

Example of output of this step.

*************************************************** ****************
* _Start_coarse_coregistration_based_on_orbits

*************************************************** ****************
Some info for pixel: 3037, 590 ( not used):
Bperp [m]: 36.1
Bpar [m]: 23.9
Bh [m]: 41.8
Bv [m]: -11.4
B [m]: 43.3
alpha [deg]: -15.4 // baseline orientation
theta [deg]: 18 // look angle
Height_amb [m]: 202.8
Btemp: [days]: -1

34



Estimated translation slave w.r.t. master:
Coarse_orbits_translation_lines: 236
Coarse_orbits_translation_pixels: 3

*************************************************** ****************
* End_coarse_orbits:_NORMAL

*************************************************** ****************

In the logfile some extra information is given, such as the number of iterations The baseline parameters are
not used, but given here to make it possible to write scripts that grep these values if a lot of interferograms are
processed of the same scene.

13.3 Implementation

The algorithm described in Annex D is used for the conversion between (line,pixel) coordinates to the cor-
responding point P on an ellipsoid. (The Doppler, range and ellipsoid equation.) This step consists of three
steps basically.

1. For the center (line,pixel) of the master image, compute the position (x,y,z in system of the orbits) of the
point P on an ellipsoid.

2. Based on the Doppler equation, compute the position of the slave satellite, corresponding to the point
P on an ellipsoid, and compute the (line,pixel) coordinates in the slave system.

3. The difference (slave-master) between the (line,pixel) coordinates is defined as the offset.

35



Chapter 14

COARSECORR

In this chapter the processing of step COARSECORR is described. The offset in line (azimuth) and pixel
(range) direction between master and slave is computed with an accuracy of about 1 pixel (1 offset for whole
image).

The magnitude images are used; correlation is computed in the space or spectral domain.

At a number of positions (geometrically distributed or at positions read from an input file ) in the image the
correlation between master and slave is computed for different offsets. The offset with the highest correlation
is the estimate for that position. The (approximate) offset between the two images is set to the offset that most
occurred over the positions, so the one that is most likely. (Sometimes an estimated offset is totally unreliable,
for example for a position in a sea, but the correlation is not very small. The estimated correlation at a position
is likely to be biased. Therefor it would not be wise to use the offset between the two images based on the
highest correlation values only, but we use this ’consistency test’ instead.)

14.1 Input Cards

CC METHOD magfft |magspace
Method selector for this step. Either perform the correlation computation on the magni-
tude images in he space or in the spectral domain.

CC IN POS filename
Input filename for ascii file with positions in original master system to place windows for
correlation computations.

CC NWIN 11
Number of windows to be distributed over the total image to estimate the offset. Should
be at least 5 or so because the most consistent estimate is selected. This card is ignored
if CC IN POS is set. Only 1 large window could be used, e.g., of size 1024x1024.

CC WINSIZE 64 64
Size of the window in lines pixels. For method in space domain it defaults to 64 64 For
method in space domain it is converted to odd numbers if necessary.

CC ACC 32 8
ONLY for method in space domain. Accuracy to search within for maximum correlation.
For fft method it automatically equals half of the CC WINSIZE.

CC INITOFF 0 0 | ”orbit”

36



Initial offset for coarse co-registration. if the word ”orbit” then the estimate of the step
COARSEORB are read from the products result file and used. If there are 2 numbers
then these are used.

Example input cards for this step:

c
c
comment ___COARSE CORR (COREGISTRATION)___
c

CC_METHOD magfft // default
c CC_METHOD magspace // (no veclib)
c CC_ACC 30 30 // (only for magspace)
CC_NWIN 21 // number of windows
CC_WINSIZE 1024 512 // size of windows
CC_INITOFF orbit // use result of orbits

// for initial offset
c CC_INITOFF 0 0 // use this if no precise orbits

14.2 Output Description

At successful exit, the process control flag is switched to 1 in the products result file . If this file does not
exist, it is created (I RESFILE card):

coarse_correl: 1

The output in the (products) result file resembles:

*************************************************** ****************
* _Start_coarse_correlation

*************************************************** ****************
Estimated translation slave w.r.t. master:
Coarse_correlation_translation_lines: 241
Coarse_correlation_translation_pixels: 3

*************************************************** ****************
* End_coarse_correlation:_NORMAL

*************************************************** ****************

In the logfile the estimated offset is given for all windows.

14.3 Implementation

14.3.1 Method magspace

The implementation in the space domain requires an odd window size, which is automatically forced (not
strictly necessary, but this made the implementation a bit easier because the center of the shifting window
is defined at a pixel.) For each location the (zero meaned) slave magnitude window is shifted over the (zero
mean) master window, and the correlation is computed (see equation D.24) by computing all pointwize prod-
ucts and dividing by the norms of the particular windows.

37



14.3.2 Method magfft

The implementation in the frequency domain is more or less the same as in the space domain. We only use
FFT’s to compute the products for the correlation (see equation D.24) in an efficient way, due to the fact that a
convolution in the space domain corresponds to a multiplication in the frequency domain. Input are the zero
mean magnitude images.

The cross products are obtained by computing the pointwize product of the zeropadded master x conj(slave).
A block function is used to compute the norms. Note that the correlation window (the overlap) does not have
a constant size with this method, but varies between winsizeL/P and .5winsizeL/P.

38



Chapter 15

M FILTAZI

In this chapter the processing of step M FILTAZI is described. This optional step filters the spectrum of the
master in azimuth direction. The part of the spectrum that does not overlap with the spectrum of the slave is
filtered out. This non overlap is due to the selection of a Doppler centroid frequency in the SAR processing,
which normally is not equal for master and slave image.

This step can in general best be performed after the COARSE coregistration and before the FINE. (The coarse
offset in pixel direction is used to evaluate the polynomial for the Doppler Centroid frequency.) The FINE steps
can benefit a lot from this filtering (TODO add plots).

By processing the RAW data to SLC at the mean Doppler centroid frequency this step can be avoided in the
InSAR processing chain. (For ESA SLC images this cannot be done obviously.)

Normally the step S FILTAZI is performed at the same time. (requires a PROCESS S FILTAZI card in the
input file , see chapter 16.) However, we kept this two seperate steps to be able to only filter the slave images
in a large stack (all slaves coregistered on the same master image). This has the advantage that for each
interferogram of the stack not a large file is created for the master. The disadvantage of not filtering the master
of course is that a small part of the spectrum of the master is not shared with the slave spectrum, yielding
loss of coherence in the interferogram.

15.1 Input Cards

AF BLOCKSIZE 1024
Length of fft per buffer in azimuth direction. In general, the larger the better.

AF OVERLAP AF BLOCKSIZE/8
Half of the overlap between consecutive bufferes in azimuth direction. Partially the same
data is used to estimate the spectrum, which might have certain advantages. However
it has not been studied yet if taking an overlap is requird. Setting this card to 0 is fastest.

AF HAMMING 0.75
The weighting of the spectrum in azimuth direction. The filtered output spectrum is first
de-weighted with the specified hamming filter, then re-weighted with a (newly centered)
one. If this parameter is set to 1, no weighting is performed. For more information see
22.3.3.

AF OUT MASTER master.afiltered
Output file name for the master image.

39



AF OUT SLAVE slave.afiltered
Output file name for the slave image.

AF OUT FORMAT cr4
Format of outut data. Either complex real4 (cr4) or complex shorts (ci2).

An example of the input file (save general cards):

PROCESS m_filtazi
PROCESS s_filtazi

c //
c //
comment ___AZIMUTH FILTERING___ //
c //
c AF_METHOD

AF_BLOCKSIZE 1024 // fftlength each column
AF_OVERLAP 64 // hbs
AF_HAMMING 0.75
AF_OUT_MASTER Outdata/1393.azifilt
AF_OUT_SLAVE Outdata/21066.azifilt
AF_OUT_FORMAT ci2

15.2 Output Description

In the process control array, the switch for azimuth filtering is turned on:

filt_azi: 1

In the master result file a section is added with the new file name:

*************************************************** ****************
* _Start_filt_azi:

*************************************************** ****************
Input_file: Outdata/1393.raw
Data_output_file: Outdata/1393.azifilt
Data_output_format: complex_real4
First_line (w.r.t. original_master): 1
Last_line (w.r.t. original_master): 3500
First_pixel (w.r.t. original_master): 1
Last_pixel (w.r.t. original_master): 500

*************************************************** ****************
* End_filt_azi:_NORMAL

*************************************************** ****************

A file (mph) is created for the master, with filtered spectrum. Figure 15.1 demonstrates the filter for 2 images:

15.3 Implementation

For each buffer of AF BLOCKSIZE lines and width pixels do (taking care of AF OVERLAP)

• Take 1DFFT in azimuth direction (over the columns).

40



−800 −600 −400 −200 0 200 400 600 800
0

5000

10000

15000

MASTER

−800 −600 −400 −200 0 200 400 600 800
0

5000

10000

15000

SLAVE

−800 −600 −400 −200 0 200 400 600 800
0

1

2

filter for master (red is composed)

−800 −600 −400 −200 0 200 400 600 800
0

1

2

filter for slave (red is composed)

−800 −600 −400 −200 0 200 400 600 800
0

5000

10000

15000

Frequency [Hz]

filtered spectrum for master

−800 −600 −400 −200 0 200 400 600 800
0

5000

10000

15000

Frequency [Hz]

filtered spectrum for slave

Figure 15.1: Azimuth filtering for a master (left) and slave (right) SLC image (frame 2781, orbit 1393 (master,
ERS2, 27-JUL-1995) and orbit 21066 (slave, ERS1, 26-JUL-1995)). The Doppler centroid frequency for the
master is fDCm = 117 Hz (constant for all columns), for the slave fDCs = 425 Hz, (obtained from the result file
(read from SLC leader)). The mean Doppler centroid equals fDC = 271 Hz. (Doppler centroid are indicated
by dashed magenta lines, x axis are frequencies from [-PRF/2:PRF/2].) The azimuth spectrum was weighted
with a Hamming window (α = 0.75). (Pictures on first row, original spectra for range column 101, red dashed
line is a 51 point moving average). The filtering (middle row) first de-weights by ’inverse’ Hamming, centered
at the image Doppler centroid, and bandlimited to the total azimuth bandwidth (ABW = 1378 Hz). Next
a new Hamming filter is applied, centered at the mean Doppler centroid, and bandlimited to ABW − 2 ‖
fDCm − fDC ‖= 1070 Hz. Obviously, the filter for the slave is the inverse of that of the master. The resulting
spectra are shown in the bottom row. The frequencies that did not overlap are filtered out, yielding a better
coherence between master and slave image. The spectrum and filters depicted here are FFT shifted for
clarity.

41



• if the Doppler centroid frequencies do not vary per column, use the same filter for all columns, else
compute the correct filter foreach column and use that. (First coarse coreg, align, then evaluate FDC
polynomial.)

• Take inverse 1DFFT in azimuth direction (over the columns), yielding the output.

The azimuth spectrum is also weighted for the antenna pattern,

fracsin((fa − fDC)/fDop)π((fa − fDC)/fDop)
2 (15.1)

Where:
fDop = 1505 Hz, the Doppler bandwidth, see [Geudtner, 1996].

We did not de-weight (and re-weight) the spectrum for this. This might be visible in figure 15.1 as a slightly
asymmetric spectrum, for master and slave. We are not convinced that this re-weighting can be performed,
without changing the signal. However we believe that possible errors are small.

42



Chapter 16

S FILTAZI

In this chapter the processing of step S FILTAZI is described. Normally the step S FILTAZI is performed at the
same time as M FILTAZI. (PROCESS M FILTAZI card in input file .) However, we kept this two seperate steps
to be able to only filter the slave images in a large stack (all slaves coregistered on the same master image).
This has the advantage that for each interferogram of the stack not a large file is created for the master. The
disadvantage of not filtering the master of course is that a small part of the spectrum of the master is not
shared with the slave spectrum, yielding coherence loss of the interferogram.

Further information on the input/output of this step can be found in Chapter 15 (M FILTAZI).

43



Chapter 17

FINE

In this chapter the processing of step FINE is described. The offset vectors to align the slave image to the
master are computed with sub pixel accuracy for a number of locations in the master. Over the total image, for
a large number of windows (e.g., 500, distributed by Doris or from a file with locations in the master coordinate
system), the offset between master and slave is estimated by computing the correlation of the magnitude
images for shifts at pixel level. Next, in a local neighborhood of the maximum (correlation at pixel level)
these correlations are harmonically oversampled (interpolated, requires FFT) to find the maximum at sub
pixel level. These offsets are then written to the (products) result file . The offset is computed in the spectral
or in the space domain (which is implemented to avoid the use of FFT, but that is required later anyway, and
to provide a check of the method in the spectral domain, which should be faster). The correlation is computed
on the magnitude images. Though we believe this to be a good method, we would like to investigate first
oversampling the images itself, and directly computing the correlation for a small number of shifts (assuming
initial offsets are known within a few pixels), as we suspect that there may be an error introduced due to
aliasing with the method that is implemented. (This method will be named ’oversample’.)

The actual computation of the transformation model (2d polynomial) is done by the step COREGPM (compu-
tation of coregistration parameters). See also [Samson, 1996].

17.1 Input Cards

FC METHOD magfft |magspace | oversample
Select method for the computation. Compute cross-correlation based on magnitude im-
ages either in the space or the spectral domain. Magnitude patches are zero-meaned.
Method magfft is fast, but patch size varies depending on shift. Magspace keeps con-
stant patch-size and shifts it over the master, but is slower. Computations are done in
space domain. Method oversample is best, theoretically, avoids aliasing of spectrum
when magnitude is computed (using FFTs).

FC NWIN 400
The number of windows to be distributed over the total image. if points are read from
file (FC IN POS), then this card is ignored.

FC IN POS file name
A ascii file with (integer line pixel pairs) coordinates in the original master coordinate
system with locations where the windows should be placed. After the last coordinate
there should NOT be a EOL (enter) (though Doris should ignore this). The coordinates
should be within the current overlap of master and slave.

FC WINSIZE 32 32

44



Figure 17.1: Plot produced by the command ’plotoffsets interferogram.out 11 6000 21 1000 0.6 Out-
data/1393.raw’ (keycard FC PLOT 0.6 BG). The magnitude is plotted in the background. Correlation is in-
dicated by the size of the circles, estimates with a correlation below 0.6 are filtered out.

The size of the correlation window. Recommended is 64 64

FC ACC 4 4
The search accuracy for the maximum correlation. Adviced is 8 8. (total search area
is from -Acc to +Acc). for FFT methods this must be a power of 2. In the logfile after
step COARSECORR the variation of the initial offsets w.r.t. the estimated values can
be seen. If this variation is larger than 1 (1 is normal for ERS1/2 SLC images) then one
should select a bigger window and a larger search accuracy.

FC INITOFF 0 0 | COARSECORR
The initial offset between master and slave. ”COARSECORR” indicates that the results
of the step COARSECORR are used.

FC OSFACTOR 16
The oversampling factor for the harmonic interpolation of the correlation. Recommended
is 32 to co-register the images within a tenth of a pixel.

FC PLOT threshold=0.4 NOBG | BG

45



Call gmt script plotoffset to plot results and to view with gv. (An example of a plot is given
above.) This script gets the section with estimated fine offsets from the interferogram
result file . The argument threshold filters out estimates with a correlation below this
threshold. The second argument (BG or NOBG) selects a call to cpxfiddle to generate
a magnitude background, while BG does call cpxfiddle. See the script plotoffsets and
the c program cpxfiddle for more information. cpxfiddle can be downloaded from Doris
internet pages. The command is echoed to stdout as INFO, which can be repeated
outside Doris. Before running the step COREGPM to estimate a transformation model,
it is very convenient to view a number of offset vectors above a correlation threshold to
select the appropriate value for the card CPM THRESHOLD. Actually, a background call
is made to the script ’plotoffsets’ (something like: ’plotoffsets interferogram.out 11 6000
21 1000 0.6’). This command can be given from the prompt as well, for different values
of the threshold.

With a command like:

awk ’BEGIN{for (i=100;i<25200;i=i+500) \
{for (j=750;j<5400;j=j+200) \
{printf "%i %i \n",i,j}} exit}’

the file for FC IN POS can be easily generated for a grid of locations.

Example input cards for this step:

c
c
comment ___FINE COREGISTRATION___
c

FC_METHOD oversample //
c FC_METHOD magfft //
c FC_METHOD magspace //

FC_NWIN 101 // number of windows
FC_WINSIZE 64 64 // size of windows
FC_ACC 8 8 // search window, 2ˆn
FC_INITOFF coarsecorr // use result of coarse to compute fir st
FC_OSFACTOR 32 // oversampling factor

17.2 Output Description

The process control flag at the start of the products result file is switched to 1 at successful exit.

fine_coreg: 1

Example of output of this step (products result file ).

*************************************************** ****************
* _Start_fine_coreg

*************************************************** ****************
Oversampling factor: 16
Number_of_correlation_windows: 100
Number posL posP offsetL offsetP correlation

0 27 27 241.06 3.12 0.16
1 27 237 241.12 3.06 0.18
2 27 447 241.12 3.31 0.44

[SKIP] [SKIP]

99 4733 761 241.06 3.44 0.15

46



100 4733 971 241.12 3.44 0.14

*************************************************** ****************
* End_fine_coreg:_NORMAL

*************************************************** ****************

In the logfile addition information is given.

17.3 Implementation

The current names for the master and slave image are read from the result files , crop section. Here also
the dimensions of the files are read. This can be checked with the debug version of Doris. Doris can be
tricked to coregister other complex files, e.g., complex interferograms for 4 pass differential interferometry, by
substitution the right parameters in that section.

17.3.1 magspace

The computations are similar to the COARSECORR magspace method.

17.3.2 oversample

See source code.

17.3.3 magfft

The correlation is computed at pixel level, similar to step COARSECORR. These computations are described
in that chapter. (That step still has to be performed because the FINE step requires accurate initial estimates
of offsets. The AccL and AccP cards define the size of the searchwindow (2*AccL x 2*AccP) around the initial
offsets to interpolate a maximum.)

The oversampling is done as follows:

1. Transformation to spectral domain of searchwindow with correlation values at pixel level.

2. Padd with zeros, half the last term.

3. Inverse transform.

4. Find maximum in space domain, this corresponds to estimated offsetvector.

Note that this way of computing is exactly the same if you first interpolate the signal and compute all correla-
tions and find the maximum, or that you first compute at pixel level and interpolate the correlation values.

47



Chapter 18

RELTIMING

This chapter describes the processing step RELTIMING. The relative timing error between the master and
slave is computed using the (precise) orbits and the result of the fine coregistration. Therefore, this step
can only be run after the steps COARSE ORBIT and FINE. The timing error in azimuth as well as in range
direction is estimated.

This step is of influence for the coregistration using a DEM (DEMASSIST step). For this coregistration the
master and slave images should be aligned as good as possible with the DEM. The master is aligned with
respect to the DEM using a simulated amplitude image (M TIMING step). This could also have been done for
the slave image, however, we have chosen to use the master-slave fine coregistration because this is probably
more precise for the relative timing. Therefore, an error in the master timing will propagate to the slave timing,
however, the relative DEM position is consistent.

18.1 Input Cards

RTE THRESHOLD 0.4
Threshold for correlation value to use estimated offset of step FINE in estimation of the
correlation based offset. This depends on the size of the window during FINE. Estimated
coherence using small windows are more biased towards 1.0, so a higher threshold is
better. For window size 64 64 a threshold 0.2 seems OK. The plotoffsets script can be
used from the prompt to figure out a good threshold value.

RTE MAXITER 10000
Maximum number of iterations in least squares adjustment and testing procedure. The
least squares adjustment and testing is repeated, until all tests are accepted, or the max-
imum number of iterations is reached. If the maximum number of iterations is reached
before acceptance of all tests, this is an indication that the fine coregistration failed or
is of bad quality. In this case, either run the FINE step again (obviously with different
settings) or increase the RTE K ALPHA card (to accept a lower quality coregistration).

RTE K ALPHA 1.97
Critical value of outlier detection. A higher value accepts more outliers. This value can
be found as the sqrt of the normal distribution. Typical values are 1.97 and 3.29.

Example input cards for this step:

c
c

48



comment ___RELATIVE TIMING ERROR___
c

RTE_THRESHOLD 0.4
RTE_MAXITER 10000
RTE_KALPHA 1.97

18.2 Output Description

The process control flag at the start of the products result file is switched to 1 at successful exit.

timing_error: 1

Example of output of this step (products result file ).

*************************************************** ****************
* _Start_timing_error:

*************************************************** ****************
Orbit_azimuth_offset (master-slave): 197 lines.
Orbit_range_offset (master-slave): 18 pixels.
Estimated_azimuth_offset (master-slave): 193.787 lines .
Estimated_range_offset (master-slave): 17.5939 pixels.
Estimated_azimuth_timing_error_lines (master-slave): 3 lines.
Estimated_range_timing_error_pixels (master-slave): 0 pixels.
Estimated_azimuth_timing_error_sec (master-slave): 0. 00178588 sec.
Estimated_range_timing_error_sec (master-slave): 0 sec .

*************************************************** ****************
* End_timing_error:_NORMAL

*************************************************** ****************

In the logfile some additional information is written.

18.3 Implementation

The observation equations are given by the zero-degree polynomial model (y = A x):










y1

y2

...
yN











=











1
1
...
1











[

αl=0,p=0

]

(18.1)

Where:
y contains the observed offsets in a certain direction.
αlp denotes the unknown coefficients of the polynomial.

The least squares parameter solution is given by:

AT Q−1
y y = AT Q−1

y Ax = Nx (18.2)

Where:
Q−1

y is the (diagonal) covariance matrix of the observations.

The coefficients are estimated by factorization of the matrix N.

The inverse of matrix N is also computed to check the solution (stability) and to compute some statistics.

A check number is given (max(abs(NN−1 − I))) that gives a hint on the stability of the solution.

49



Chapter 19

DEMASSIST

In this chapter the processing of step DEMASSIST is described. Here the slave image is coregistered to the
master image based on a DEM. For each pixel of the master image the corresponding (real valued) coordinate
in the slave image is computed.

For this step a DEM is required, e.g., obtained by the SRTM mission. The Doris distribution contains the utility
construct dem.sh do download and prepare SRTM data (see Section C.2.12). The utility also outputs a figure
of the final result (.ps format) and the lines needed for the Doris input file.

The DEM-assisted coregistration is not dependent on the correlation between the master and the slave
image. Coregistration errors due to bad distribution or lack of useful correlation windows in the conven-
tional method are therefore prevented. Furthermore, the coregistration improves in case of large base-
lines and strong topography. The improvement is especially significant in case of X-band data. An analy-
sis of the performance of the implemented DEM assisted coregistration for various sensors is described in
[Arikan et al., 2008, Nitti et al., 2008].

19.1 Input Cards

DAC IN DEM filename
filename of input DEM (gtopo30). File is assumed to be stored in a raster. Major row
order. from North to South, line-by-line. See also internet links at Doris home page for
available DEMs.

DAC IN FORMAT I2 | I2 BIGENDIAN | R4 | R8
format of input DEM on file (signed short for gtopo30, or real4, or real8; input ma-
trix is raw binary data w/o header, endianness of host platform is assumed, except for
I2 BIGENDIAN).

DAC IN SIZE 6000 4800
Number of rows and columns of input DEM file. Default is set to tile w020n90.DEM.

DAC IN DELTA 0.00833333333333333333 [ deltalon ]
Grid spacing of input DEM in decimal degrees, latitude longitude. Default is equal
gridspacing, default set to tile w020n90.DEM.

DAC IN UL 89.995833333333333 -19.995833333333333333333
Coordinates of UL (upperleft) corner in decimal degrees, latitude [-90, 90] longitude
[-180, 180]. Default is set to tile w020n90.DEM. It is interpreted as max-latitude, min-
longitude in source.

50



DAC IN NODATA -9999
Identifier to ignore data in input DEM with this value. Default is set to tile w020n90.DEM.

DAC OUT DEM filename
Request optional debug output to float file of input DEM per buffer, cut to the interfero-
gram window. Info on these files is written as DEBUG.

DAC OUT DEMI filename
Request optional debug output to float file of interpolated input DEM, cut to the interfer-
ogram window. Info on these files is written as DEBUG.

DAC OUT DEM LP demheight lp.raw
Filename of output DEM height in radar coordinates.

Example input section:

c ___ ___
comment ___DEMASSIST___
c

DAC_IN_DEM final_wanaF2835.dem
DAC_IN_FORMAT r4
DAC_IN_SIZE 3601 3601
DAC_IN_DELTA 0.000833333 0.000833333
DAC_IN_UL 40 27 // the center cn of UL corner p$
DAC_IN_NODATA -32768
DAC_OUT_DEM dem_dac.raw

c DAC_OUT_DEMI demi_dac.raw
c DAC_OUT_DEM_LP demLP_dac.raw

19.2 Output Description

At successful exit the process control flag is switched on:

demassist: 1

The output (in the products result file ) looks like:

*************************************************** ****************
* _Start_dem_assist:

*************************************************** ****************
DEM source file: final_wanaF2835.dem
Min. of input DEM: 92
Max. of input DEM: 1815
First_line (w.r.t. original_master): 3053
Last_line (w.r.t. original_master): 8052
First_pixel (w.r.t. original_master): 1714
Last_pixel (w.r.t. original_master): 2713
Number of lines: 5000
Number of pixels: 1000
Deltaline_slave00_dem: -194.341
Deltapixel_slave00_dem: -17.7004

51



Deltaline_slave0N_dem: -194.082
Deltapixel_slave0N_dem: -18.8867
Deltaline_slaveN0_dem: -194.479
Deltapixel_slaveN0_dem: -17.8064
Deltaline_slaveNN_dem: -194.232
Deltapixel_slaveNN_dem: -18.9409

*************************************************** ****************
* End_dem_assist:_NORMAL

*************************************************** ****************

The output in the logfile is more verbose, specifying the results of the intermediate steps. Also go over the
standard out in case of problems, with the SCREEN set to DEBUG level.

19.3 Implementation

The DEM-assisted coregistration is estimated in two steps:

First, the DEM is radarcoded to the coordinate systems of the master and slave image. Per DEM point the
master coordinate and the offset between master and slave is saved to a file. Both the master coordinates
and offsets are real valued.

Second, the offsets are interpolated to the integer grid of master coordinates. A linear interpolation based on
a Delaunay triangulation is used. The software package Triangle for the Delaunay triangulation is kindly made
available by Jonathan Shewchuk [Shewchuk, 1996, Shewchuk, 2002], see also
http://www.cs.cmu.edu/˜quake/triangle.html .

The finally optained master-slave offsets per master pixel are saved to a file and used in the RESAMPLE step
to resample the slave image to the master geometry.

52



Chapter 20

COREGPM

This chapter describes the processing step COREGPM is described (coregistration parameters, computation
of a polynomial that models the alignment of slave on master).

Based on the estimated offsets computed in step FINE, a 2d-polynomial model of certain degree of the
coregistration is computed. When the step DEMASSIST is applied, the polynomial is estimated through the
residuals between the FINE and DEMASSIST results. This appears necessary, because we experienced
a remaining trend in the residuals. In this case, a 1-degree polynomial seems sufficient. A least squares
solution is used, solution by cholesky decomposition of the normal matrix. Data may be excluded a priori by
setting a threshold value for the correlation. Data can also be excluded by editing the products result file
and artificially decrease the correlation for a certain offset window.

After the computations, the residuals between the estimated model and the ’observed’ offsets are plotted with
the csh-script plotcpm. These plots are useful to iteratively come to a good transformation model (changing
CPM THRESHOLD or CPM DEGREE for each iteration, or identify and remove some estimated offsets (the
’observations’, blunders) by setting their correlation to 0.00001 in the output section of the FINE processing
step.

Also the observations itself and some statistics are plotted (w-tests, a large value indicates an unreliable
estimate).

The script can be adapted to your own wishes, it simply calls GMT (see [Wessel and Smith, 1998]) based on
the ascii data file CPM DATA.

This step is important, since the interferogram is sensestive to mis alignments of slave on master. There-
fore, we always took a very cautious approach. However, that meant running this step, editing the result
file , running again, etc. which got quite cumbersome. To reduce the manual effort, we introduced a card
CPM MAXITER that performs a number of iterations automatically. It also should remove no more windows
than necessary for a good fit. I have experimented with values like 20 for this card. (having say 600 windows
after step FINE). If you want to approach that after each computation you want to have full control what to do,
simply set this card to 0.

The first run of coregpm for the area of Fig. 23.1 is shown in Figures 20.1, 20.2, and 20.3. We have used a
polynomial of degree 1, and a threshold of 0.4 here.

The second run of coregpm is shown in Figures 20.4, 20.5, and 20.6. In the products result file the outliers
are artificially set to 0 correlation (thus being below the threshold), to exclude them from the least squares
estimation. After this run we continued with the resampling.

Degree d=1 is enough to account for most effects in normal images. The 2d-polynomial has the form:

53



GMT Feb 16 11:55:16 2000

Location_windows+wtests

1499

2998

4497

5996

7495

8994

10493

11992

13491

14990

A
zi

m
ut

h

1499

2998

4497

5996

7495

8994

10493

11992

13491

14990

A
zi

m
ut

h

399 798 1197 1596 1995 2394 2793 3192 3591 3990

Range

399 798 1197 1596 1995 2394 2793 3192 3591 3990
Range

0 1 3 5 8 11
12 13 14 15 16 17 20 22 23

24 26 29 31
35 36 37 40 43

47 48 49 50 53 56
59 60 61 62 63

71 72 73 80 81
82 83 87 88 90 91 93

94 95 96 97 98 102
107 111 112 113 115

117 118 119 123 127
128 137 138 139

140 143 146 150 151
152 157 162

163 164 166 167 170 171 174
175 177 178 180

189 190 191 192 193 197
198 200 201 202 203 205 209

210 215 218
221 222 224 225 226 231

233 235 241 242
247 249 252 253

256 257 259 260 261 262 265
269 270 271 272 273 274

280 281 283 284 286 289
291 293 294 297 300

305 306 307
314 316 318

327 330 333
339 340 345 346

349 352 353 354 357
361 366 367 369

374 376 377 378 379 380
384 385 386 387 388 389 390 392

398 401 403
407 409 410 411 413

420 421 422 423 425 426
434 436

442 443 444 445 446 447 448
454 455 456 457 458 459 465

467 469 472
477 478 480 481 483

489 490 492 493 494

Figure 20.1: Plot produced by ’plotcpm’ for the first run. The estimated offsets are plotted here (normalized),
together with a (90 degrees rotated) w test as ellipses.

GMT Feb 16 11:55:16 2000

Azimuth_direction

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.95.05.15.25.35.45.55.65.75.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.6

ab
s(

e)

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.95.05.15.25.35.45.55.65.75.85.96.06.16.26.36.46.56.66.76.86.97.07.17.27.37.47.57.6

ab
s(

e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Correlation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlation

0 13

5

81112 131415
16

17

20

222324 2629 313536 3740 434748

49

50

53

5659 60 616263 7172 7380

81

8283 8788

90

91 9394959697 98102 107111112 113
115

117118119123 127128

137

138 139140143

146

150151

152

157162

163

164 166167170171 174 175177 178

180

189190191192 193197198200201 202203205 209 210215 218221222 224225 226231 233235 241242 247249 252253256257 259260261262265 269270271 272 273274

280

281 283284286289 291 293294 297 300305306 307314316318 327330333 339 340345346349 352

353

354357

361

366367369 374376377 378379380 384385 386387 388389390 392398401403 407409 410411413420421422423425426 434436442443444 445446447
448454 455456 457458459

465

467469472 477478480 481483489 490492
493494

Figure 20.2: Plot produced by ’plotcpm’ for the first run. The absolute error (estimated offsets minus observed
offsets) are plotted for azimuth direction.

54



GMT Feb 16 11:55:16 2000

Range_direction

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.95.05.15.25.35.45.55.65.75.85.96.06.16.26.36.46.56.6

ab
s(

e)

0.00.10.20.30.40.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.52.62.72.82.93.03.13.23.33.43.53.63.73.83.94.04.14.24.34.44.54.64.74.84.95.05.15.25.35.45.55.65.75.85.96.06.16.26.36.46.56.6

ab
s(

e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Correlation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlation

0 135 81112 131415 16
17 20

222324 2629 313536 3740 434748

49

50 535659 60 616263 7172 7380
81

8283 8788
90

91 9394959697 98102 107111112 113 115117118119123 127128 137138 139140143
146

150151152 157162163 164 166167170171 174 175177 178180189190191192 193197198200201 202203205 209 210215 218221222 224225 226231 233235 241242 247249 252253256257 259260261262265 269270271 272 273274280 281 283284286289 291 293294 297 300
305306 307314316318 327330333 339 340345346349 352

353

354357361 366
367

369 374376377 378379380 384385 386387 388389390 392398401403 407409 410411413420421422423425426 434436442443444 445446447 448454 455456 457458459

465

467469472 477478480 481483489 490492 493494

Figure 20.3: Plot produced by ’plotcpm’ for the first run. The absolute error (estimated offsets minus observed
offsets) are plotted for the range direction.

GMT Feb 16 11:51:36 2000

Location_windows+wtests

1499

2998

4497

5996

7495

8994

10493

11992

13491

14990

A
zi

m
ut

h

1499

2998

4497

5996

7495

8994

10493

11992

13491

14990

A
zi

m
ut

h

399 798 1197 1596 1995 2394 2793 3192 3591 3990

Range

399 798 1197 1596 1995 2394 2793 3192 3591 3990
Range

0 1 3 8 11
12 13 14 15 16 22 23

24 26 29 31
35 36 37 40 43

47 48 50 56
59 60 61 62 63

71 72 73 80
82 83 87 88 91 93

94 95 96 97 98 102
107 111 112 113 115

117 118 119 123 127
128 138 139

140 143 150 151
157 162

164 166 167 170 171 174
175 177 178

189 190 191 192 193 197
198 200 201 202 203 205 209

210 215 218
221 222 224 225 226 231

233 235 241 242
247 249 252 253

256 257 259 260 261 262 265
269 270 271 272 273 274

281 283 284 286 289
291 293 294 297 300

305 306 307
314 316 318

327 330 333
339 340 345 346

349 352 354 357
366 367 369

374 376 377 378 379 380
384 385 386 387 388 389 390 392

398 401 403
407 409 410 411 413

420 421 422 423 425 426
434 436

442 443 444 445 446 447 448
454 455 456 457 458 459

467 469 472
477 478 480 481 483

489 490 492 493 494

Figure 20.4: Plot produced by ’plotcpm’ for the second run. The estimated offsets are plotted here (normal-
ized), together with a (90 degrees rotated) w test as ellipses.

55



GMT Feb 16 11:51:35 2000

Azimuth_direction

0.0

0.1

0.2

0.3

0.4

0.5

ab
s(

e)

0.0

0.1

0.2

0.3

0.4

0.5

ab
s(

e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Correlation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlation

0
13

8

11
12 13

14

15

16 22

23

24
2629

313536
37

40

434748

50

5659

60

61

6263 71

72 73

80

82
83

87

88

91

93

9495

9697 98102
107

111

112

113

115

117

118
119123

127

128
138

139

140143 150

151 157
162

164
166167

170

171

174

175

177

178
189

190
191

192 193

197
198200

201

202
203

205

209

210215

218

221
222

224

225

226

231

233

235
241

242 247

249 252253

256
257

259

260261
262

265 269270271
272

273274

281 283284

286
289

291

293

294

297

300

305
306

307

314

316

318

327330

333

339

340

345

346349

352

354

357 366367

369 374376
377

378

379380 384
385 386387 388389

390
392

398

401
403 407

409

410411

413

420

421422423

425

426 434

436

442
443

444
445446

447 448

454
455

456

457

458

459467

469

472

477
478480

481

483

489 490
492

493

494

Figure 20.5: Plot produced by ’plotcpm’ for the second run. The absolute error (estimated offsets minus
observed offsets) are plotted for azimuth direction.

GMT Feb 16 11:51:36 2000

Range_direction

0.0

0.1

0.2

0.3

0.4

0.5

ab
s(

e)

0.0

0.1

0.2

0.3

0.4

0.5

ab
s(

e)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Correlation

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Correlation

0 13 8

11

12 13
14

15
16

22

23

24

26

29

313536
3740

43

47
4850

56
59 60

61

62
63

7172 73

80

82

83

8788

91
93

94
95
9697 98102

107
111

112

113

115

117

118119123 127128138 139

140
143

150151
157

162
164

166

167

170

171

174 175
177 178
189190191

192

193197
198

200
201

202
203

205 209
210215 218

221

222

224
225

226

231 233235

241242 247

249 252
253

256
257 259

260261

262

265

269
270

271

272
273274 281

283

284
286

289

291

293294
297

300

305306 307
314316

318

327

330
333 339 340

345346

349 352354357

366

367

369 374376377
378

379

380 384

385

386387 388
389

390 392
398401403 407409

410

411
413

420
421422
423

425

426

434436

442
443

444 445
446447

448
454 455456 457458

459
467

469
472

477
478
480

481
483

489

490

492

493
494

Figure 20.6: Plot produced by ’plotcpm’ for the second run. The absolute error (estimated offsets minus
observed offsets) are plotted for the range direction.

56



Figure 20.7: Plot produced by ’plotcpm’. The magnitude is plotted in the background.

f(x, y) =
d

∑

i=0

i
∑

j=0

αi−j,jx
i−jyj (20.1)

Perhaps one might do the resampling with a lower quality polynomial, and thereafter do the fine coregistration
(initial offsets 0,0) and this step (yielding new coefficients). The polynomial coefficient can then be added (?)
to form a new model, with which the slave can again be resampled. This has not been tested.

20.1 Input Cards

CPM THRESHOLD 0.4
Threshold for correlation value to use estimated offset of step FINE in estimation of
polynomial coefficients. This depends on the size of the window during FINE. Estimated
coherence using small windows are more biased towards 1.0, so a higher threshold is
better. For window size 64 64 a threshold 0.2 seems OK. The plotoffsets script can be
used from the prompt to figure out a good threshold value.

CPM DEGREE 1
Degree of 2d-polynomial. See annex for definition of degree. Degree 2 is adviced.

CPM DUMP OFF | ON
Dump computed model to files in float format. Filename for azimuth model is offse-
tazi #l #p.r4 (where number of lines,pixels are substituted). Filename for range is sim-
ilar. Content of file is evaluated model in master system. via INFO the dimensions are
also echoed.

CPM PLOT NOBG | BG

57



Call gmt script plotcpm to plot results and to view with gv. (An example of the plots is
given above.) The argument NOBG prevents a call to cpxfiddle to generate a magnitude
background, while BG does call cpxfiddle. See the script plotcpm and the c program
cpxfiddle for more information. cpxfiddle can be downloaded from Doris internet pages.
The command is echoed to stdout as INFO, which can be repeated outside Doris.

CPM WEIGHT BAMLER | NONE | LINEAR | QUADRATIC
Experimental card. Weight estimated offsets (observations) based on correlation in least
squares solution. weighting option Bamler was added in v3.16 and made the default
(recommended). The theoretical precision of shift estimation using coherent patches is
the basis of this weighting option.

CPM MAXITER 10
Number of outlier to remove automatically based on outlier test. The least squares
adjustment is repeated, until all tests are accepted, or the max. number of iterations is
reached.

CPM K ALPHA 1.97
Critical value of outlier detection. A higher value accepts more outliers. This value can
be found as the sqrt of normal distribution. if you want a level of significance for the
outlier test of 0.05, then look the value up under a half sided test.

Example input cards for this step:

c
c
comment ___COMPUTE COREGISTRATION PARAMETERS___
c

CPM_THRESHOLD 0.4
CPM_DEGREE 2
CPM_WEIGHT linear // none
c CPM_WEIGHT quadratic // none
CPM_MAXITER 20
CPM_PLOT NOBG

20.2 Output Description

The plots are made if CPM NOPLOT is not set. The plotcpm uses a file CPM DATA which is created in the
working directory containing the data to be plotted.

The process control flag at the start of the products result file is switched to 1 at successful exit.

comp_coreg: 1

Example of output of this step (products result file ).

*************************************************** ****************
* _Start_coregpm:

*************************************************** ****************
Degree_cpm: 1
Estimated_coefficientsL:

2.41088165e+02 0 0
-1.48768713e-05 1 0
-1.75315145e-05 0 1

Estimated_coefficientsP:

58



3.11544442e+00 0 0
7.39316101e-06 1 0
1.91161205e-04 0 1

*************************************************** ****************
* End_coregpm:_NORMAL

*************************************************** ****************

In the logfile some additional statistical information is written. The standard deviation of the estimates and the
residuals after the least squares adjustment.

An ascii file CPM Data is created with some information for the plotcpm. An example is shown below:

File: CPM_Data
This file contains information on the least squares

estimation of the coregistration parameters.
This info is used in the plotting scripts.
There are 10 columns containing:
Window number, position L, position P,

offsetL (observation), offsetP (observation), correlati on,
estimated errorL, errorP, w-test statistics for L, P.

win posL posP offL offP corr eL eP wtstL wtstP
--------------------------------------------------- ---------
0 268 30 -241.06 -3.19 0.42 0.08 0.19 81.23 200.79
1 268 369 -241.00 -3.31 0.55 0.01 0.24 15.73 249.91
3 268 1048 -241.00 -3.38 0.46 0.01 0.16 11.35 170.22
5 268 1726 -242.38 -3.31 0.47 1.39 0.05 1443.57 53.66
8 268 2744 -240.69 -3.56 0.71 0.31 0.02 323.20 19.65

[SKIP][SKIP]

492 14974 1260 -241.12 -3.38 0.41 0.14 0.18 150.86 184.45
493 14974 1599 -240.69 -3.56 0.52 0.58 0.07 601.50 72.21
494 14974 1938 -241.00 -3.56 0.42 0.27 0.14 280.63 147.84

20.3 Implementation

The observation equations are given by the polynomial model (y = A x):











y1

y2

...
yN











=











1 l1 p1 l21 · · · pd
1

1 l2 p2 l22 · · · pd
2

...
1 lN pN l2N · · · pd

N





























αl=0,p=0

α10

α01

α20

...
α0d



















(20.2)

Where:
y contains the observed offsets in a certain direction.
li denotes the location (line number) of the observed offsets in a certain direction.
pi denotes the location (pixel number) of the observed offsets in a certain direction.
αlp denotes the unknown coefficients of the polynomial.

The data is rescaled (to the interval [-2, 2], see Annex D) so the normalmatrix is rescaled. otherwise there
could occur very high values for, e.g., ld = 250005. The least squares parameter solution is given by:

59



AT Q−1
y y = AT Q−1

y Ax = Nx (20.3)

Where:
Q−1

y is the (diagonal) covariance matrix of the observations. this matrix can be equal to identity or to the
correlation values in version 1. (CPM WEIGHT card).

The coefficients are estimated by factorization of the matrix N.

The inverse of matrix N is also computed to check the solution (stability) and to compute some statistics.

A check number is given (max(abs(NN−1 − I))) that gives a hint on the stability of the solution.

60



Chapter 21

RESAMPLE

In this chapter the resampling, or interpolation, of the slave image on the master grid is described. The
slave image is resampled (reconstruction of original signal from the samples by correlation with interpolation
kernels in space domain) accordingly to the transformation model from the step COREG PM and optionally
DEMASSIST. This model states with sub-pixel accuracy which points of the slave correspond to the master
grid.

Note: This step may be fairly time consuming.

The spectrum in azimuth can be centered at zero before resampling, and shifted back to its original Doppler
centroid frequency afterwards. This is required since the spectrum of the kernel function is centered at zero.
See also [Geudtner, 1996]. This shifting has been implemented in release 3.0, but not in prior versions.

The polynomial described by the strings in the slave result file (Xtrack f DC constant, etc.) is used. If the
spectrum should be shifted, use the card RS SHIFTAZI.

New in v3.4 is that the azimuth kernel is shifted to the Doppler centroid, not as before the dataspectrum to
zero and back. This is made default.

To assess the quality of the resampling, the resampled slave image can again be coregistered (step FINE)
onto the master. This should yield offset vectors that are normally distributed with zero mean. The slave
image could also be resampled in steps, first resampling it by a first degree model, then again with a higher
degree model.

21.1 Input Cards

RS METHOD RECT | TRI | CC4P | CC6P | TS6P | TS8P | TS16P | KNAB6 |
KNAB8 | KNAB10 | KNAB16 | RC6P | RC12P

Select kernel for interpolation. a simple step function (nearest neighbor), or a linear
interpolation (tri), or cubic convolution kernel (4 or 6 point), or a knab sampling window
using a default data oversampling factor, or a Raised Cosine (best) kernel (6 or 12
points), or a truncated sinc (6, 8 or 16 point) can be used.

RS OUT FILE s resampled.raw
Output filename of resampled slave, cannot be equal to the input file name.

RS OUT FORMAT CR4 | CI2
Output format of resampled slave, complex real4 or complex short (same as SLC input
format, this causes an error of maximum about 1 percent (?)).

61



RS DBOW linelo linehi pixello pixelhi
Data base output window (in master coordinate system) for slave to make a cutout. If
card is omitted it defaults to the overlap between master and slave (and corrected for
half the kernel size where no interpolation is possible). For stacking of interferograms
on top of each other, use the coordinates of the master after cropping. In this way all
interferograms are automatically aligned. If the slave image is smaller than the window,
the pixels are set to 0.

RS DBOW GEO lat 0 lon 0 height width
Output window specified in latitude, longitude (decimal degrees, WGS84). Alternative
to and overrides normal RS DBOW card. The latitude and longitude of the central pixel
of the desired crop are specified, together with the height, width in pixels. This card is
especially useful in combination with the M DBOW GEO and S DBOW GEO cards (see
Chapters 5 and 11).

RS SHIFTAZI [ ON | OFF ]
If ON, then it is accounted for non centered azimuth spectrum of the data. The azimuth
interpolation kernel is shifted to the Doppler center frequency before resampling. If the
fDC is small, users could switch this card to OFF.

Example input cards for this step:

c
c
comment ___RESAMPLING SLAVE___
c
c RS_METHOD cc4p

RS_METHOD cc6p
c RS_METHOD ts6p
c RS_METHOD ts8p
c RS_METHOD ts16p

RS_OUT_FILE Output/01393.resampled
RS_OUT_FORMAT ci2

c RS_DBOW 1001 2105 501 700
RS_DBOW_GEO 52.123 5.732 5000 1000

21.2 Output Description

The process control flag at the start of the slave result file is switched to 1 at successful exit.

resample: 1

Example of output of this step (in slave result file ).

*************************************************** ****************
* _Start_resample

*************************************************** ****************
Data_output_file: Output/01393.resampled
Data_output_format: complex_short
Interpolation kernal: 6 point cubic convolution.
First_line (w.r.t. original_master): 1001
Last_line (w.r.t. original_master): 2105
First_pixel (w.r.t. original_master): 501
Last_pixel (w.r.t. original_master): 700

*************************************************** ****************
* End_resample:_NORMAL

*************************************************** ****************

62



LP
Master

L0

Slave

pixels

lines

0P
00

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

overlap

Figure 21.1: Definition of the overlap between master and slave.

Note that the line and pixel numbers are given in the master coordinate system, because the slave is interpo-
lated to that grid now.

21.3 Implementation

The overlap between slave and master is computed as indicated in figure 21.1.

Interpolation is done with a kernel function such as, e.g., a truncated sinc function. First a look-up table is
computed for the selected interpolation kernel. This table evaluates the kernel every 1/INTERVAL = 0.05
positions, which should be accurate enough.

Interpolation is independent for azimuth and range direction. For all points in the overlap between master and
slave, the co-registration polynomial is evaluated.

If the total image does not fit in the memory, processing is done in buffers.

The azimuth spectrum of the complex SLC data is not centered around zero in general. The location of the
peak in the spectrum is given by a polynomial in the header file.

63



For a correct interpolation, either the spectrum of the data has to be shifted to zero, or the interpolation kernel.
We shift the kernel in azimuth. In range the spectrum is centered (for satellite data).

A simple derivation shows how the kernel should be shifted.
Suppose we have a signal:

s(x)=exp(i * 2pi * x* fdc/prf),

and we want to interpolate this signal at xi=5.1 with a triangular
kernel k(x_0), such that the interpolated signal

s_i(xi)=sum(k(x_0). * s(x_1)).

This means with x_0=[-0.1,0.9] and x_1=[5,6] (as implemented in
Doris), the kernel is formed as

k(x_0)=triangle(x_0) = [0.9,0.1]

and we shift this with the MINUS sign by multiplication with
t(x_0)=exp(-i * 2p* x_0 * fdc/prf).

Then the interpolated value at 5.1 equals:

s_i(5.1) = k(-0.1) * t(-0.1) * s(5) + k(0.9) * t(0.9) * s(6)
= 0.9 * exp(-i * 2pi * -0.1 * fdc/prf) * exp(i * 2pi * 5* fdc/prf) +

0.1 * exp(-i * 2pi * 0.9 * fdc/prf) * exp(i * 2pi * 6* fdc/prf)
= exp(i * 2pi * 5.1 * fdc/prf)

= s(5.1);// perfect interpolation!

On the contrary, when we use the PLUS, it follows that

s_i(5.1) = 0.9 * exp(i * 2pi * -0.1 * fdc/prf) * exp(i * 2pi * 5* fdc/prf) +
0.1 * exp(i * 2pi * 0.9 * fdc/prf) * exp(i * 2pi * 6* fdc/prf)

= 0.9 * exp(i * 2pi * 4.9 * fdc/prf) + 0.1 * exp(i * 2pi * 6.9 * fdc/prf)
NE s(5.1);// wrong sign used!

See also [Hanssen and Bamler, 1999].

21.3.1 Output formats

Computations are done in complex float. Casting these values to complex short format introduces an error.
Of course, the main advantage is a factor 2 reduction in the size of the output file .

Now an example follows for the error in amplitude and phase for a complex value of about (100,100). If the
actual interpolated complex value equals (100.5,100.5), then the error in the magnitude approximately is

em ≈ 100(
√

(1002 + 1002)−
√

(100.52 + 100.52))/
√

(100.52 + 100.52) = 0.5% (21.1)

If the actual value did equal (100.5,100.0), then the error in the phase is approximately

ep ≈ 100(arctan(100/100)− arctan(100.5/100))/ arctan(100.5/100) = 0.3% (21.2)

These are worst case scenarios. If the complex value is larger, then the relative error decreases. Note that
the maximum for a signed short integer is 215 = 32768.

64



21.3.2 Interpolation Kernels

In this section the available kernels are defined. See also [Hanssen and Bamler, 1999]. The KNAB interpo-
lation kernel is described in a IEEE letter of 2003. The Raised Cosine interpolation kernel is described in a
article in J. Of electromagnetic waves, 2005. Cho et al.

sinc(x) =
sinπx

πx
(21.3)

rect(x) =







0 |x| > 0.5
0.5 |x| = 0.5
1 |x| < 0.5

(21.4)

i(x) = tri(x) =

{

0 |x| > 1
1− |x| |x| < 1

(21.5)

(α = −1)

i(x) =







(α + 2)|x|3 − (α + 3)|x|2 + 1 0 ≤ |x| < 1
α|x|3 − 5α|x|2 + 8α|x| − 4α 1 ≤ |x| < 2
0 2 ≤ |x|

(21.6)

(α = −.5; β = .5):

i(x) =















(α− β + 2)|x|3 − (α− β + 3)|x|2 + 1 0 ≤ |x| < 1
α|x|3 − (5α− β)|x|2 + (8α− 3β)|x| − (4α− 2β) 1 ≤ |x| < 2
β|x|3 − (8β)|x|2 + (21β)|x| − (18β) 2 ≤ |x| < 3
0 3 ≤ |x|

(21.7)

(L=6, 8, 16)

i(x) = sinc(x)rect(
x

L
) (21.8)

65



Chapter 22

FILTRANGE

In this chapter the processing of step FILTRANGE is described. This optional step filters the spectra in range
direction of master and slave to reduce noise in the interferogram. The noise reduction results from filtering
out non overlapping parts of the spectrum. This spectral non overlap in range between master and slave
is caused by a slightly different viewing angle of both sensors. The longer the perpendicular baseline, the
smaller the overlapping part. Eventually a baseline of about 1100 m results in no overlap at all (the critical
baseline for ERS). (Assuming no local terrain slope.) A reduction of typically 10-20% in the number of residues
can be achieved.

Method porbits filters based on the orbits (perpendicular baseline) for a constant (given) terrain slope. Perform
this step after coarse coregistration, since the approximate overlap is used to filter both images. The output
images are cropped to this overlap. To filter ’on the save side’, i.e., not to filter out too much, use a negative
terrain slope of, e.g., 10 degrees.
This step is not recommended, except perhaps to improve the coregistration polynomial for long baseline
pairs. After the resampling the range filtering then could be repeated on the original data with the adaptive
algorithm.

Method adaptive should be performed after the resampling of the slave to the master grid, because the fringe
frequency is estimated from the interferogram (that is temporary computed). It is performed simulataneous
for the master and slave image.

22.1 Input Cards

RF METHOD adaptive | porbits
Method selector for range filtering. Either adaptive (recommended) or based on the
precise orbits.

RF FFTLENGTH 64
For method porbits and adaptive. For method porbits: length of block in range direction,
512 or 1024 (default for this method) advised. For method adaptive: Length of window
for adaptive method. A peak is estimated for parts of this length.

RF OVERLAP 0
For method adaptive. Overlap between input buffers in range direction.

RF HAMMING 0.75
For method porbits and adaptive. Weight for hamming filter (1 is rect).

66



RF SLOPE 0
For method porbits. Terrain slope in degrees. Positive slope is towards radar. A slope
equal to the viewing angle implies total filtering.

RF NLMEAN 15
For method adaptive. Take (walking) mean over RF NLMEAN lines to reduce noise for
peak estimation. Has to be odd. Compare with periodogram.

RF THRESHOLD 5
For method adaptive. Threshold on SNR of peak estimation to perform range filtering.

RF OVERSAMPLE 2
For method adaptive. Oversample master and slave with this factor before computing
the complex interferogram for peak estimation. This factor has to be a power of 2. 2 is
default to be able to estimate the peak for frequency shifts larger than half the bandwidth.
A factor of 4 for example might give a better estimate, since the interval between shifts
that can be estimated is in that case halfed (fixed FFTLENGTH).

RF WEIGHTCORR [ ON | OFF ]
For method adaptive. In peak estimation, weight values to bias higher frequencies. The
reason for this card is that the low frequencies are (for small OVERSAMPLE factors)
aliased after interferogram generation. The deweighting is done by a dividing by a trian-
gle function (convolution of 2 rect functions, the shape of the range spectrum). Effect of
this card may be neglectable.

RF OUT MASTER master.rfilter
Output data file name of master.

RF OUT SLAVE slave.rfilter
Output data file name of slave.

RF OUT FORMAT cr4 | ci2
Output data format for master and slave file.

Example input:

c
c

comment ___ ADAPTIVE RANGE FILTERING ___
c

RF_METHOD adaptive
RF_FFTLENGTH 128 // 2500 m
RF_NLMEAN 15 // odd
RF_THRESHOLD 5 // SNR
RF_HAMMING 0.75 // alpha

RF_OVERSAMPLE 4
RF_WEIGHTCORR OFF
RF_OUT_MASTER Outdata/3397.rfilter
RF_OUT_SLAVE Outdata/23070.rfilter
RF_OUT_FORMAT ci2

67



GMT Nov 28 15:40:57 2000

0

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0

5

10

15

20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 22.1: Frequency histograms of the FINE coregistration correlation values. At 301 locations of a image
the fine coregistration was performed, and a histogram has been made of the correlation values. The bin
width equals 0.05. It can be clearly seen that the histogram of the filtered data is located to the right, i.e., is
better.

22.2 Output Description

The process control flags in the result files for the master and the slave are switched on:

filt_range: 1

In the filtrange section the filename and format is described after the filtering. Master and slave are cut out so
they exactly fit on each other.

*************************************************** ****************
* _Start_filt_range:

*************************************************** ****************
Method: adaptive
Data_output_file: Outdata/23070.rfilter.3
Data_output_format: complex_real4
First_line (w.r.t. original_master): 201
Last_line (w.r.t. original_master): 6000
First_pixel (w.r.t. original_master): 100
Last_pixel (w.r.t. original_master): 3000

*************************************************** ****************
* End_filt_range:_NORMAL

*************************************************** ****************

Figure 22.1 shows the improvement in the correlation for method porbits. A histogram is made of the corre-
lation values of the FINE coregistration with and without range filtering. The area was relatively flat and the
perpendicular baseline was approximately 175 meters.

68



22.3 Implementation

22.3.1 Method: porbits

The frequency shift ∆f between the master and slave range data spectra equals

∆f = − c

λ

B⊥

r1 tan(θ − α)
= − c

λ

tan(∆θ)

tan(θ − α)
≈ − c

λ

∆θ

tan(θ − α)
(22.1)

Where:
∆θ = θ1 − θ2, α is the local terrain slope w.r.t. the ellipsoid, c is the speed of light, θ is the local incidence
angle (!), λ is the radar wavelength, r1 is the slant range ground to master. The approximation is used in
Doris. Of course, the sign of B⊥, or ∆θ is important to filter the correct side of the spectra. Note that

α→ 23◦ ⇔ ∆f →∞ (22.2)

The local incidence angle is computed with the dot product of vectors P, and P-M. See also [Gatelli et al., 1994].

The algorithm in Doris works as

• While there is a line in the overlap, get next line for master and slave.

• Get block of FFT LENGTH pixels.

• Compute viewing angle, perpendicular baseline, delta theta for middle pixel of block.

• Compute frequency shift by equation 22.1, and compose filter of rect and hamming.

• Filter master and slave.

• Write block back (for last block only partially).

22.3.2 Method: adaptive

After the resampling of the slave on the master grid is performed this algorithm can be used. The local
fringe frequency is estimated using peak analysis of the power of the spectrum of the complex interferogram.
The resampling is required since the local fringe frequency is estimated from the interferogram. This fringe
frequency is directly related to the spectral shift in range direction. (Note this shift is not a shift, but different
frequencies are mapped on places with this shift...) The algorithm generally works as follows.

• Take part of master and slave (e.g., 500 lines by 128 range pixels.)

• Oversample master and slave and generate complex interferogram.

• Take FFT over range for all lines of complex interferogram.

• Take power. If requested, weight this powerspectrum with auto-convolution of 2 rect functions with
appropriate bandwidth. (Actually, perhaps the spectrum should also be weighted with autoconvolution
of Hamming, but since I am not sure that this has a big impact on real data this is not done.)

• Take moving average over the lines of the power FFT’s for noise suppression (kind of periodogram).
(This was better implemented as a convolution with a block function (e.g., 9 x 128)?)

• Estimate peak per line in oversampled/averaged powerspectrum of complex interferogram. Estimate
SNR = fftlength·peak

rest
.

69



• This peak is directly related to overlap of spectra for this part of this line. (See also Fig. 22.2.) ∆fr =
ffringe.

• If SNR is above threshold (input of user, e.g., 3), remove appropriate parts of spectra of master/slave.
Optionally compute inverse hamming window and new hamming window, and rect window to filter one
side of master spectrum, and other side of slave spectrum. (See also Fig. 22.3.) Note that the filter is
mirrored (matlab fliplr) for master/slave. The SNR of the peak of a random spectrum (sea) probably is a
little larger than 1, so threshold of 3 may not be large enough.

• Do inverse FFT for filtered master, slave, which yields the filtered image in the space domain.

• Take next part of master and slave (e.g., 500 lines by next 128 range pixels) until all lines are filtered.

In practice this is done in blocks. These blocks are overlapping in lines (because the averaging over lines
means one cannot filter all lines in the block), and not in range. Parameters that can be adjusted are the
FFTlength, the moving average mean, the SNR threshold.

The fftlength should be large enough to yield a good estimate of the local fringe frequency, and small enough
to contain a constant slope of the terrain. The total number of fringes in range directorion can be easily
estimated using the perpendicular baseline.

It is probably a good idea to add a card so an overlap in range between blocks can be used. This avoids
’edge’ effects, and increases the filtering of terrain near, e.g., a lake (since the SNR for peak detection will be
higher for a number of blocks towards the noise). This is not implemented yet.

See also [Gatelli et al., 1994], [Geudtner, 1996], [Curlander and McDonough, 1991]. See also our matlab
toolbox.

0 50 100 150
0

20

40

60
original spectrum master

0 50 100 150
0

20

40

60
original spectrum slave

0 100 200 300
0

5

10

15
x 10

5 peak estimation

0 50 100 150
0

20

40

60
filtered spectrum master

0 50 100 150
0

50

100
filtered spectrum slave

Figure 22.2: Peak estimation in spectral domain of (oversampled) complex interferogram. Non FFTshifted.

70



22.3.3 Hamming filter

The Hamming filter that optionally is used to de-weight en re-weight the spectrum of master and slave has the
form:

W (fr) =

[

α + (1− α) cos(2π
fr

fs

)

]

rect

(

fr
Br

)

. (22.3)

Where fr is the frequency axis (-fs/2:df:fs-df, df=fs/N). fs is the range sampling rate (18.96MHz), and Br is
the bandwidth in range (15.55MHz). α is a parameter controlling the amount of weighting.

rect(x) =

{

1, ‖ x ‖< 0.5
0, otherwise

(22.4)

Note: rect not periodic.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
filters...

Figure 22.3: Spectral filtering windows (inverse hamming, boxcar (rect), and new hamming. Note these are
FFTshifted.

71



detail of phase of interferogram before rangefiltering

20 40 60 80 100 120 140

5

10

15

20

25

30

35

40

detail of phase of interferogram after rangefiltering

20 40 60 80 100 120 140

5

10

15

20

25

30

35

40

Figure 22.4: Detail of interferogram with and without rangefiltering. (fftlength=128, nlmean=15, snrtresh-
old=5). The perpendicular baseline is about 200 m for this interferogram. The fringes are clearly sharper
after the filtering. The number of residues for the interferogram was reduced by 20%. Subtraction of both
interferograms yielded a random phase, so no structural effect of range filter implemenation is suspected.

72



Chapter 23

INTERFERO

In this chapter the processing of step INTERFERO is described. In this step the following is computed.

The (complex) interferogram is computed, with or without subtraction of the reference phase. The reference
phase is subtracted if there is a 2d-polynomial in the products result file (result of step FLATEARTH). It is
not subtracted if this is not in the result file or if the number of coefficients is set to 0.

The complex interferogram minus reference phase is defined as:

I = M · S∗ · R∗ (23.1)

Where:
{.}∗ denotes the complex conjugated;
· denotes a pointwise multiplication;
I is the complex interferogram;
M is the complex master image;
S is the complex (resampled) slave image;
R is the complex (amplitude ≡ 1) reference phase.

The phase image (of the complex interferogram minus reference phase) is defined as:

φ = arctan2(Iimag, Ireal) (23.2)

Where:
arctan2 is the four quadrant arc tangent;
φ is the phase image;
I is the complex interferogram;

This is identical to

φ = φM − φS − φR (23.3)

Multilooking can be performed to reduce noise. Usually a ratio of (line:pixel) = 5:1 between the factors is
chosen to obtain more or less square pixels (20x20m2 for factors 5 and 1). (The resolution decreases of
course if multilooking is applied.)

73



Figure 23.1: Phase image of complex interferogram. The ’flat earth’ is clearly visible as a trend over the
interferogram.

23.0.4 NEW

Note that for the optimal results, i.e. to avoid an aliasing of spectras, the images first have to be oversampled
by a factor two before multiplication for an optimal result. See sections on ’OVERSAMPLE’ card.

For a more modular approach in the new method it is not advisable to subtract the reference phase in this step.
If you do want to subtract the reference phase here, then make sure you first run Doris to run comprefpha,
and then make a second run for step interfero.

After generation of the complex interferogram, the reference phase can be computed by the new module
comprefpha and subtracted by the new module subtrrefpha. (Also a reference height model can be computed
and subtracted in future modules.)

Figure 23.1 shows an example of a complex interferogram. Only the phase is shown here. We processed
orbits 21066 and 1393 of frame 2781 (Italy), acquired at 26th and 27th July 1995 respectively (ERS1,2 Tandem
mission). The parallel baseline is about 35 meters, which implies a height ambiguity of about 270 meters.
Clearly a large trend caused by the ’flat earth’ is present, but also some topographic features can be seen.
In the frame the elavation ranges from zero to 1400 meters. (The original SLC images were cut out to 20000
lines by 4000 pixels, The interferogram is multiooked by factors 10 in azimuth and 2 in range, which yields a
dimension of 1475 lines by 1997 pixels.)

23.1 Input Cards

INT OUT CINT filename
filename of output datafile for complex interferogram (of step interferogram). one of
INT OUT * is mandatory.

INT OUT INT filename
filename of output datafile for (real) interferogram (of step interferogram). one of
INT OUT * is mandatory.

INT MULTILOOK 5 1

74



multilookfactor, if no multilooking is desired, set this to ”1 1”. If the reference phase is
not subtracted in this step, be carefull not to multilook too much in this step. In step
subtrrefpha again a multilook card is present (where one can multilook by factors 2 2 for
example).

Example input section:

c
c
comment ___product generation___
c

INT_OUT_CINT Output/cint.raw // optional
c INT_OUT_INT Output/ int.raw // optional
c INT_OUT_FE Output/flatearth.raw // optional

INT_MULTILOOK 10 2 // line, pixel

23.2 Output Description

At successful exit, the process control flag is switched on:

interfero: 1

The output looks like (in the products result file ):

*************************************************** ****************
* _Start_interfero

*************************************************** ****************
Data_output_file: Output/cint.raw
Data_output_format: complex_real4
First_line (w.r.t. original_master): 1001
Last_line (w.r.t. original_master): 2105
First_pixel (w.r.t. original_master): 501
Last_pixel (w.r.t. original_master): 700
Multilookfactor_azimuth_direction: 10
Multilookfactor_range_direction: 2
Number of lines (multilooked): 110
Number of pixels (multilooked): 100

*************************************************** ****************
* End_interfero:_NORMAL

*************************************************** ****************

The (complex) output data file can be viewed with, e.g., in Matlab with a following script:

fid = fopen(’Output/cint.raw’,’r’);
cint = (fread(fid,[100 220],’float32’)).’;
fclose(fid);
realpart = cint[:,1:2:size(cint,1)];
cplxpart = cint[:,2:2:size(cint,1)];
cint = realpart + i * cplxpart;
phase = angle(cint);
imagesc(phase);
colorbar;

Output may include the matrix with the reference phase. For flatearth correction this normally resembles a
plane, and is not very useful output.

75



pixel (range)

lin
e 

(a
zi

m
ut

h)

1

L=

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1 2 3 4 .. P

Buffer I

Buffer II

Rest

Figure 23.2: Use of buffers in implementation of computation interferogram.

23.3 Implementation

The following is computed (in buffers).

1. Read in (buffer of) complex master and slave image (M and S).

2. If there is a reference phase R (real values), evaluate it at the master grid (buffer), and then subtract it
(in a complex way) from slave S and store it (in S). (matlab like notation, pointwise multiplication notated
by .*)

S = S. ∗ (cosR + i sin R) (23.4)

3. Compute complex interferogram and store it in M.

M = M. ∗ conj(S)(≡M. ∗ conj(S). ∗ conj(R)) (23.5)

4. Multilook complex interferogram if requested. Do not divide (scale) multilooked interferogram.

5. Write this buffer to disk and start next one.

See Figure 23.2 for an explanation of the use of buffers in the implementation. In this example, the number of
lines equals 17. The number of pixels equals P. Suppose multilook factor in line direction mL=3 and in pixel
direction mP=3. Furthermore, after computing the available memory, the number of lines of one buffer (BL) is
maximum 7. BL is set to a multiple of mL, BL=6.

Now the number of fully filled buffers NB = 17/6 = 2. The number of lines left in the last buffer equals 17We
can compute something in this last buffer only for the first three lines, so the last buffer is 3 lines long.

The first buffer is read (master and slave image), and computations are performed. These results are written
to disk. Then next buffer, etc. If buffers==3 then resize the matrices for the computations.

The number of lines of the total result are L/mL and P/mP (floored).

76



Chapter 24

COMPREFPHA

In this chapter the processing of step COMPREFPHA is described. This step can be performed as soon as
the precise orbits are known. The recommended approach is to compute this only after the computation of
the interferogram, and then use the step SUBTRREFPHA to subtract it. This step is not required if method
”exact” is used in step SUBTRREFPHA.

The flatearth correction (the phase caused by the reference surface (WGS84 for now)) is computed in this
step. For a certain (line,pixel) in the master image the corresponding coordinates (x,y,z) of the master and
slave satellite and the point P on the reference ellipsoid are computed, utilizing the set of equations (Doppler,
range and ellipsoid equation), see annex D. Then the parallel baseline and the phase is computed.

The parallel baseline B‖ is defined as (M/S are positions of master/slave, P is the position of the point on the
reference surface):

B‖ = d(M, P )− d(S, P ) (24.1)

The phase of a pixel in the master image is defined as:

φ = −4π

λ
d(M, P ) (24.2)

The reference phase for this pixel is defined as:

φ = −4π

λ
B‖ (24.3)

The reference phase is computed in a number of points distributed over the total image in this way, after which
a 2d-polynomial is estimated (least squares) fitting these ’observations’. (So a plane can be fitted by setting
the degree to 1.)

A 2d-polynomial is defined as:

f(x, y) =

d
∑

i=0

i
∑

j=0

αi−j,jx
i−jyj (24.4)

Thus the order of the coefficients (line,pixel) is (degree d):
d=0: A00 (1)
d=1: A10A01 (2, 3)
d=2: A20A11A02 (4, 5, 6)
d=3: A30A21A12A03 (7, 8, 9, 10)

77



Thus the number of coefficients (unknowns) equals:

1

2
((d + 1)2 + d + 1) (24.5)

A polynomial of degree 5 normally is sufficient to model the reference phase for a full scene. A lower degree
might be selected for smaller images, which also should increase the stability of the normalmatrix. We would
expect the higher order terms to be small because the polynomial describes a smooth, long wave body
(ellipsoid). To force the polynomial to be smooth one might consider always using a polynomial of degree 2
or 3.

See also [Schwäbisch, 1995] or [Geudtner and Schwäbisch, 1996].

24.1 Input Cards

FE METHOD porbits
Method selector for this step. currently there is only one method.

FE DEGREE 5
degree of 2d polynomial.

FE NPOINTS 501
Number of points to compute reference phase for least squares estimation.

FE IN POS filename
ascii file with positions (master coord. system) in it where to compute the reference
phase, and then to model it by a polynomial. Card FE NPOINTS is ignored if this card
is specified. This card can be used, e.g., if it is desired to have the points on a grid,
including the edges. Possibly one might even select points outside the grid (though not
smaller than 0), in order to avoid excessive fluctuations at the edge if a higher degree
polynomial is used.

FE OUT FILE filename
Card will be added in future for optional output of reference phase.

One can use an awk like to make a grid:

awk ’BEGIN{for (i=100;i<25200;i=i+500) \
{for (j=750;j<5400;j=j+200) \

{printf "%i %i \n",i,j}} \
exit}’ > positions.in

and a card in the input file :

FE_IN_POS positions.in

This step used to be named ”FlatEarth”. This explains the prepended FE ’s, instead of some abbreviation for
reference phase.

78



Example input section:

c
c
comment ___ COMPREFPHA ___
c

FE_METHOD porbits
FE_DEGREE 3
FE_NPOINTS 201

24.2 Output Description

At successful exit the process control flag is switched on:

comp_refpha: 1

The output (in the products result file ) looks like:

*************************************************** ****************
* _Start_comprefpha

*************************************************** ****************
Degree_flat: 5
Estimated_coefficients_flatearth:

5.17144173e+03 0 0
4.03705656e-03 1 0
2.17736976e-01 0 1

-2.05452064e-06 2 0
2.15880157e-07 1 1

-1.27934869e-05 0 2
8.80499980e-10 3 0

-1.64339133e-11 2 1
-8.28354289e-11 1 2
-6.04376860e-10 0 3
-1.64239900e-13 4 0

2.25037286e-15 3 1
1.48243991e-14 2 2
5.52622526e-14 1 3
1.74773307e-12 0 4
1.11724810e-17 5 0
2.74597475e-20 4 1

-2.64743817e-18 3 2
4.10973605e-18 2 3

-3.09581184e-17 1 4
-6.94891272e-16 0 5

*************************************************** ****************
* End_comprefpha:_NORMAL

*************************************************** ****************

In the log file, some statistics are given for the errors (observation minus estimated value). These errors
should have a maximum of 0.1 phase cycle. The can be plotted with GMT or someother package to evaluate
the difference between the polynomial and the ’observations’.

Here also the standard deviation per estimated coefficients is given. This std. seems to be too large, but an
error in the computations could not be found.

The polynomial can not easily be visualized at the moment. (It is normalized, not evaluated in this step.)
In the old method of the interfero step (see Chapter 23), there was a card to output the reference phase
polynomial because it was evaluated there anyway. It seems logical to add a card for outputting the (wrapped
or unwrapped) reference phase in the step subtrrefpha (Chapter 25), which likely will be added in one of the
cumming releases.

79



Chapter 25

SUBTRREFPHA

In this chapter the processing of step SUBTRREFPHA is described.

This step requires the steps INTERFERO and COMPREFPHA for obvious reasons. In this step the reference
phase of a mathematical body (ellipsoid) is subtracted from the complex interferogram. This is done by
complex multiplication with the conjugated, written symbolically as follows:

I = I · (cos Rφ − i sinRφ) (25.1)

Where I is the complex interferogram, · denotes pointwize multiplication, and Rφ is the reference phase for a
certain point.

25.1 Input Cards

SRP METHOD polynomial | exact
method selector for subtraction of reference phase. ”polynomial” evaluates the polyno-
mial computed in step COMP REFPHA, ”exact” computes the reference phase explicitly
for each pixel, and subtracts it. Computations are done by evaluation system of 3 equa-
tions foreach pixel.

SRP OUT CINT cint.minrefpha.raw
filename of output datafile for complex interferogram (of step subtrrefpha).

SRP MULTILOOK 1 1
multilook factors in line (azimuth) and pixel (range) direction.

SRP DUMPREFPHA [ OFF |ON ]
This card specifies to dump the reference phase as a complex real4 file, containing the
evaluated reference phase polynomial just as it would have been subtracted from the
complex interferogram (multilooked). The amplitude should be equal to one by definition.
WARNING: the reference phase is not subtracted, only dumped, if this card is specified.
If you want to study the reference phase for different ellipsoids, compile different versions
of Doris, changing the parameters in the file refsystem, and use these executables to
generate the reference phase.

SRP OUT REFPHA refphase.raw
name of output file reference phase. Only if SRP DUMPREFPHA.

SRP OUT H2PH filename

80



Request optional output of height-to-phase factors.

Example input section for dumping the reference phase:

c
c ___ step subtrrefpha ___
c SRP_METHOD exact
c

SRP_METHOD polynomial
c SRP_OUT_CINT Outdata/cint.minrefpha.raw

SRP_MULTILOOK 4 4
SRP_DUMPREFPHA
SRP_OUT_REFPHA Outdata/refpha.raw

25.2 Output Description

At successful exit the process control flag is switched on:

subtrrefpha: 1

The output (in the products result file ) looks like:

*************************************************** ****************
* _Start_subtrrefpha:

*************************************************** ****************
Data_output_file: Outdata/cint.minrefpha.raw
Data_output_format: complex_real4
First_line (w.r.t. original_master): 245
Last_line (w.r.t. original_master): 14964
First_pixel (w.r.t. original_master): 7
Last_pixel (w.r.t. original_master): 3998
Multilookfactor_azimuth_direction: 40
Multilookfactor_range_direction: 8
Number of lines (multilooked): 368
Number of pixels (multilooked): 499

*************************************************** ****************
* End_subtr_refphase:_NORMAL

*************************************************** ****************

We noticed that if the precise orbits are not long enough (not enough time before and after first/last line), this
results in a wrong reference phase for obvious reasons. Interpolation near the end of the data points is not
very good with cubic splines. This can be solved by using more orbital data points after the last line of the
scene (see cards for step M PORBITS).

Figure 25.1 shows the result of subtracting the reference phase polynomial from the interferogram (Fig-
ure 23.1). (The same scene as described in section 23.0.4, again multilooked, now by factors 4 and 4,
resulting in total multilooking of 40 and 8, which agrees on the terrain with a resolution of about 160 meters
square.)

This step can be mis-used to correct for residual orbital fringes (if you know what you are doing).

To do this, first count the number of fringes you want to remove from the interferogram. Then, edit the
products result file and create a section for the step COMPREFPHA. In this output section, simply define
a polynomial that describes for example a linear trend in range of, say, 2.5 fringes. Then, run this step, and
doris will not know that it is not the reference phase polynomial that is subtracted from the interferogram, but
an additional correction polynomial that has been inserted by hand.

81



Figure 25.1: Phase image of complex interferogram. The ’flat earth’ is subtracted, leaving dominantly topo-
graphic fringes.

82



Chapter 26

COMPREFDEM

In this chapter the processing of step COMPREFDEM is described. A DEM is radarcoded at the grid of the
interferogram. In step subtrrefdem (chapter 27) it can be subtracted from the complex interferogram.

This step requires a DEM. It can best be performed after the interferogram generation. SRTM can be used
to obtain the topography in 3 arcseconds (Near global: ∼ 90 m. at the equator) or 1 arcsecond (USA only)
resolution. The input DEM file must have the byte order of your platform in order to extract correct elevation
value, see CRD IN FORMAT option for details. The DEM should be in the WGS84 system (same as the orbit
ephemerides) The Doris distribution contains the utility construct dem.sh to download and prepare SRTM
data (see Section C.2.12).

An alternative is the USGS gtopo30 DEM. This is a global DEM with relatively low precision and gridspacing
(30 seconds, approximately 1 km at equator). There are 33 tiles covering the globe, in total requiring about
3GB of disk space. (For more information, see for example
http://edc.usgs.gov/products/elevation/gtopo30/gtop o30.html or Google for more in-
formation).

The input DEM has to be in an equiangular grid. The format is short signed integers, real4 floats, or real8
doubles (meters). The DEM should be in WGS84 system (same as orbit ephemerides). The UpperLeft pixel of
the DEM matrix on file should be the most North, most West pixel, i.e., the pixel with largest latitude (between
-90,90) and smallest longitude (between -180,180 (?)).

26.1 Input Cards

CRD IN DEM filename
filename of input DEM. File is assumed to be stored in a raster. Major row order. from
North to South, line-by-line. See also internet links at Doris home page for available
DEMs.

CRD IN FORMAT I2 | I2 BIGENDIAN | R4 | R8
format of input DEM on file (signed short for gtopo30, or real4, or real8; input ma-
trix is raw binary data w/o header, endianness of host platform is assumed, except for
I2 BIGENDIAN).

CRD IN SIZE 6000 4800
Number of rows and columns of input DEM file. Default is set to tile w020n90.DEM.

CRD IN DELTA 0.00833333333333333333 [ deltalon ]

83



Grid spacing of input DEM in decimal degrees, latitude longitude. Default is equal
gridspacing, default set to tile w020n90.DEM.

CRD IN UL 89.995833333333333 -19.995833333333333333333
Coordinates of UL (upperleft) corner in decimal degrees, latitude [-90, 90] longitude
[-180, 180]. Default is set to tile w020n90.DEM. It is interpreted as max-latitude, min-
longitude in source.

CRD IN NODATA -9999
Identifier to ignore data in input DEM with this value. Default is set to tile w020n90.DEM.

CRD INCLUDE FE OFF | ON
If this card is switched on, the reference phase of the DEM is computed, including the
’flat earth’ term. Otherwize, the phase is computed with respect to the ellipsoid, yielding
only topographic phase.

CRD OUT DEM filename
Request optional debug output to float file of input DEM per buffer, cut to the interfero-
gram window. Info on these files is written as DEBUG.

CRD OUT DEMI filename
Request optional debug output to float file of interpolated input DEM, cut to the interfer-
ogram window. Info on these files is written as DEBUG.

CRD OUT FILE refdem.raw
Filename of output radarcoded DEM.

CRD OUT DEM LP filename
Request optional output of DEM in radar coordinates.

CRD OUT H2PH filename
Request optional output of height-to-phase factors.

Most of these parameters can be found in the .HDR file of gtopo30 DEM’s. Example input section:

# ------------------------------------------
# REFERENCE DEM
# ------------------------------------------

CRD_IN_DEM final_wanaF2835.dem
CRD_IN_FORMAT r4 // default is short integer
CRD_IN_SIZE 3601 3601
CRD_IN_DELTA 0.000833333 0.000833333
CRD_IN_UL 40 27
CRD_IN_NODATA -32768
CRD_OUT_DEM_LP 42408_22735.demlp
CRD_OUT_FILE 42408_22735.demphase
CRD_OUT_H2PH 42408_22735.h2ph

26.2 Output Description

At successful exit the process control flag is switched on:

comp_refdem: 1

84



Figure 26.1: Interferogram of radarcoded DEM for area described in section 23.0.4.

The output (in the products result file ) looks like:

*************************************************** ****************
* _Start_comp_refdem:

*************************************************** ****************
Include_flatearth: No
DEM source file: /d2/doris-test/final_wanaF2835.dem
Min. of input DEM: 92
Max. of input DEM: 1791
Data_output_file: 42408_22735.demphase
Data_output_format: real4
First_line (w.r.t. original_master): 3060
Last_line (w.r.t. original_master): 8052
First_pixel (w.r.t. original_master): 1719
Last_pixel (w.r.t. original_master): 2710
Multilookfactor_azimuth_direction: 1
Multilookfactor_range_direction: 1
Number of lines (multilooked): 4993
Number of pixels (multilooked): 992

*************************************************** ****************
* End_comp_refdem:_NORMAL

*************************************************** ****************

The output in the logfile is more verbose, specifying the results of the intermediate steps. Also go over the
standard out in case of problems, with the SCREEN set to DEBUG level.

Figure 26.1 shows an example of a real valued phase map (interferogram) for a radarcoded DEM (the
Data output file). (This applies to the same scene as described in Section 23.0.4.)

26.3 Implementation

The DEM reference phase is computed in two steps:

First, the DEM is radarcoded to the coordinate systems of the master image. Per DEM point the master
coordinate (real valued) and the computed reference phase is saved to a file.

Second, the reference phase is interpolated to the integer grid of master coordinates. A linear interpolation

85



based on a Delaunay triangulation is used. The software package Triangle for the Delaunay triangulation is
kindly made available by Jonathan Shewchuk [Shewchuk, 1996, Shewchuk, 2002], see also
http://www.cs.cmu.edu/˜quake/triangle.html .

86



Chapter 27

SUBTRREFDEM

In this chapter the processing of step SUBTRREFDEM is described.

This step requires the steps INTERFERO and COMPREFDEM for obvious reasons. In this step the reference
phase of a digital elevation model is subtracted from the complex interferogram. This is done by complex
multiplication with the conjugated, as explained in step subtrrefpha (chapter 25).

27.1 Input Cards

SRD OUT CINT cint.minrefdem.raw
Filename of output complex interferogram.

SRD OFFSET 0 0
Offset to be applied in azimuth line, range pixel direction. The synthetic phase image
outputed by COMPREFDEM is shifted by the specified offset before subtraction. A pos-
itive shift indicates a shift of the synthetic phase image to the right (range), up (azimuth).

Example input section:

c
c ___ step subtrrefdem ___
SRD_OUT_CINT Outdata/cint.minrefdem.raw
SRD_OFFSET 1 -2

27.2 Output Description

At successful exit the process control flag is switched on:

subtr_refdem: 1

The output (in the products result file ) looks like:

*************************************************** ****************
* _Start_subtrrefdem

*************************************************** ****************
Additional_azimuth_shift: 1
Additional_range_shift: -2

87



Figure 27.1: Phase image of complex interferogram. The phase of the reference DEM is subtracted (’flat earth’
was already subtracted in subtrrefpha), leaving residual topographic, atmospheric, and errorous fringes.

Data_output_file: Outdata/cint.minrefdem.raw
Data_output_format: complex_real4
First_line (w.r.t. original_master): 245
Last_line (w.r.t. original_master): 14964
First_pixel (w.r.t. original_master): 7
Last_pixel (w.r.t. original_master): 3998
Multilookfactor_azimuth_direction: 40
Multilookfactor_range_direction: 8
Number of lines (multilooked): 368
Number of pixels (multilooked): 499

*************************************************** ****************
* End_subtrrefpha:_NORMAL

*************************************************** ****************

Figure 27.1 shows the result of subtracting the reference phase of the radarcoded DEM from the interferogram
(See Figure 25.1). It can be seen the number of topographic fringes is reduced, though there still remain some
residual effects. A next version of Doris will include an option to first correlate the radarcoded DEM with the
interferogram, to find an additional offset. The radarcoded reference DEM is then shifted on (multilooked)
pixel level before subtraction.

88



Chapter 28

COHERENCE

In this chapter the processing of step COHERENCE is described.

In this step the following is computed. The (complex) coherence image is computed, with or without subtrac-
tion of the reference phase and the radarcoded DEM phase. The reference phase is subtracted if there is a
2d-polynomial in the products result file (result of step FLATEARTH). It is not subtracted if this is not in the
result file or if the number of coefficients is set to 0. For a proper estimation of the coherence map, especially
over mountainous areas, the radarcoded DEM phase should also be subtracted. In this case, the result of
step COMPREFDEM is required in the products result file. This is the default procedure since v4.01.

The complex coherence image between two images is defined as:

γc =
E{M · S∗}

√

E{M ·M∗} ·E{S · S∗}
(28.1)

Where:
E{.} is the expectation;
∗ is the complex conjugated;
γc is the complex coherence;
M is the complex master image;
S is the complex slave image (possibly minus (complex) reference phase and DEM phase: S = S ·R∗).

The coherence is defined by |γc| and its estimator as:

γ̂ =

∣

∣

∣

∣

∣

∣

1
N

∑N

i=0 MiS
∗
i

√

1
N

∑N

i=0 MiM∗
i

1
N

∑N

i=0 SiS∗
i

∣

∣

∣

∣

∣

∣

(28.2)

Multilooking can be performed to reduce noise. Usually a ratio of (line:pixel) = 5:1 between the factors is
chosen to obtain more or less square pixels (20x20m2 for factors 5 and 1). (The resolution decreases of
course if multilooking is applied.)

Data buffering is applied for the memory considerations.

28.1 Input Cards

COH METHOD include refdem | refphase only

89



Figure 28.1: Coherence estimate using the REF-
PHASE ONLY (old) method. The colorscale
ranges from 0 to 1.

Figure 28.2: Coherence estimate using the IN-
CLUDE REFDEM (new) method. The colorscale
ranges from 0 to 1.

Method selector for coherence map generation. INCLUDE REFDEM computes the co-
herence map, with subtraction of both reference phase and radarcoded DEM phase,
with the assumption that the last one has not been multilooked. By selecting the REF-
PHASE ONLY method, the coherence map is computed with subtraction of the only
reference phase (if available)

COH OUT CCOH filename
Filename of output datafile for complex coherence image (of step coherence). one of
COH OUT CCOH and * COH is mandatory.

COH OUT COH filename
Filename of output datafile for (real) coherence image (of step coherence). One of
COH OUT CCOH and * COH is mandatory.

COH MULTILOOK 10 2
Multilookfactor, if no multilooking is required, set this to ”1 1”.

COH WINSIZE 10 2
Window size of shifting window for coherence estimation.

Example input section for this step.

c
c
comment ___product generation___
c

COH_METHOD include_refdem
c COH_OUT_CCOH Output/ccoh.raw // complex image

COH_OUT_COH Output/coh.raw // real
COH_MULTILOOK 10 2
COH_WINSIZE 10 2

90



28.2 Output Description

At successful exit the process control flag is switched on:

coherence: 1

Example output section for this step (in products result file ).

*************************************************** ****************
* _Start_coherence:

*************************************************** ****************
Method: INCLUDE_REFDEM
Data_output_file: 42408_22735.coh
Data_output_format: real4
First_line (w.r.t. original_master): 3060
Last_line (w.r.t. original_master): 8052
First_pixel (w.r.t. original_master): 1719
Last_pixel (w.r.t. original_master): 2710
Multilookfactor_azimuth_direction: 5
Multilookfactor_range_direction: 1
Number of lines (multilooked): 998
Number of pixels (multilooked): 992

*************************************************** ****************
* End_coherence:_NORMAL

*************************************************** ****************

The output data file must be viewed with an external package like Matlab for now.

28.3 Implementation

The images are read in buffers for memory considerations. First complex interferogram is computed as in
INTERFERO. and the norms of the master and slave images are computed.

Then a shifting window of size COH WINSIZE is used to estimate the complex coherence (see Annex D).

The coherence is computed with a function of the matrix class. This function returns only the lines of the
input which can be computed due to the edge of the the estimator window. Then this is multilooked (requires
number of lines to be a multiple of the multilook factor)

Therefore, the buffer should contain an overlap with the previous one.

91



Chapter 29

FILTPHASE

This chapter describes the processing of step FILTPHASE. This step can be optionally used to filter the (latest)
complex interferogram, in order to reduce noise, e.g., for visualization or aiding the phase unwrapping. It is
probably best run after step SUBTRREFPHA. A lot of warnings can be generated if an image containing a lot
of zeros is processed. These warnings can be ignored.

The method goldstein is described in [Goldstein and Werner, 1998]. Basically the fringes become sharper
after filtering because the peak in the spectrum (caused by the fringes) is given a higher relative weight.
Method spatialconv simply is a spatial convolution with a certain kernel function, e.g., a 3 point moving av-
erage. Method spectral is a multiplication of the spectrum with the kernel specified in an input file (e.g. a
spectral low pass filter (LPF)).

29.1 Input Cards

PF METHOD goldstein
Select goldstein method (”goldstein”), or spatial convolution (”spatialconv”) with
cards PF KERNEL and PF IN KERNEL2D, or spectral filter (”spectral”) with cards
PF IN KERNEL2D, PF BLOCKSIZE and PF OVERLAP. For more info see implemen-
tation section.

PF OUT FILE cint.alpha.filtered
Output filename for complex real4 file with filtered phase (goldstein filter) where alpha is
substituted. For method spatialconv, default is ”cint.filtered”

PF IN FILE filename numlines
Optional filename of complex real4 inteferogram (mph) file to be filtered instead of the
default (which is obtained by reading the ’products’ result files ). Also specify the num-
ber of lines in this file as second argument. This card is included to be able to filter files
without having to create dummy result files to ’trick’ Doris. For now, the interferogram
to be filtered must be complex real4.

PF ALPHA 0.2
This card is for method goldstein only. Alpha parameter for filtering. This parameter
must be between 0 (no filtering) and 1 (most filtering). The card PF KERNEL influences
this value, since a higher smoothing, relative decreases the peak, and thus the effect of
alpha.

PF OVERLAP 3

92



This card is for method goldstein and spectral only. Half of the size of the overlap
between consecutive blocks and buffers, so that partially the same data is used for
filtering. The total overlap should be smaller than PF BLOCKSIZE. If this parameter is
set to BLOCKSIZE/2-1 (the maximum value for this parameter) then each output pixel is
filtered based on the spectrum that is centered around it. This is probably the best, but
may be time consuming.

PF BLOCKSIZE 32
This card is for method goldstein and spectral only. Size of the blocks that are filtered.
This must be a power of 2. It should be large enough so that the spectrum can be
estimated, and small enough that it contains a peak frequency (1 trend in phase). (32 is
recommended.))

PF KERNEL 3 1/3 1/3 1/3
This card is for method goldstein and spatialconv only. 1D Kernel function to perform
convolution. First the number of elements in the kernel is given, then the values. The
kernel is always normalized to 1 by dividing the kernel by the sum of the absolute values
of the kernel.
For method goldstein: defaults to kernel [1 2 3 2 1]. This kernel is used to smooth the
amplitude of the spectrum of the complex interferogram. The spectrum is later scaled
by the smoothed spectrum to the power alpha.
For method spatialconv: Default is a 3 point moving average [1 1 1] convolution. The real
and imaginary part is averaged seperately this way. For more info see implementation
section. The output matrix has a zero valued edge of size floor(kernel/2).

PF IN KERNEL2D filename
This card is for method spatialconv and spectral only. Name of ascii input file to specify
a 2D spatial kernel function. This file must start with a 1 line header containing numlines,
numcols, scalingfactor. The next numlines lines contain the filter. numlines and numcols
must be odd (centered) for method spatialconv. For method spectral they may be even;
the zero frequency is located at position kernelsize/2-1 (starting at 0). The values of the
kernel are multiplied by the scale factor. The kernel is not normalized in any other way.
The output matrix has a zero valued edge of size floor(kernel/2).

Example of the cards for this step:

c
c
comment ___PHASEFILT___
c
c PF_METHOD spectral
c PF_IN_KERNEL2D /proto/myfilter
c PF_BLOCKSIZE 32
c PF_OVERLAP 4
c
c PF_METHOD spatialconv
c PF_KERNEL 5 1 1 1 1 1
c PF_IN_KERNEL2D /proto/myfilter
c
c PF_METHOD goldstein

PF_IN_FILE Outdata/cint.srp.raw 323
PF_ALPHA 0.5
PF_KERNEL 5 1 1 1 1 1
PF_OVERLAP 4
PF_BLOCKSIZE 32

A simple example of PF IN KERNEL2D in an ascii input file (use this example with method spatialconv)

5 5 0.05

93



0 1 1 1 1
-1 0 1 1 1
-1 -1 0 1 1
-1 -1 -1 0 1
-1 -1 -1 -1 0

A second example of PF IN KERNEL2D ascii input file One could use cards: PF BLOCKSIZE 32, and
PF OVERLAP 4, PF METHOD spatial

15 15 1.0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The idea is to have a template directory with ascii kernels in it, that then can be used in doris. I do not have
much experience with this.

One could generate the different filters with Matlab. For spectral method, one may want to filter with an
Hamming window.

If you have matlab, paste the following to your terminal (uses Matlab) to generate the ascii file (just an example,
please experiment yourself). Moreover, if you want to offer your ascii kernels for standard distribution of doris,
please email it to us.

matlab << __EOFHD > /dev/null
SIZE = 32;
filterfile = ’filter.hamming’;
f = (standing(hamming(SIZE)) * ones(1,SIZE)) . * ...

(ones(SIZE,1) * lying(hamming(SIZE)));
fid = fopen(filterfile,’w’);
fprintf(fid,’%i %i 1.0\n’,SIZE,SIZE);
for ii=1:SIZE

fprintf(fid,’%4.2f ’,f(ii,:));
fprintf(fid,’\n’);

end
exit;
__EOFHD

And in Doris use the cards (using filter in spectral domain in this case):

PF_METHOD spectral
PF_IN_KERNEL2D filter.hamming
PF_BLOCKSIZE 32
PF_OVERLAP 4

29.2 Output Description

The process control flag for this step is switched on in the products result file :

94



Figure 29.1: Magnitude of unfiltered complex in-
terferogram.

Figure 29.2: Phase of unfiltered complex interfer-
ogram.

filtphase: 1

And in the same result file a section will be added like (except if PF IN FILE is specified):

*************************************************** ****************
* _Start_filtphase:

*************************************************** ****************
Method: goldstein: size, alpha, overlap: 32 0.5 4
Input_file: Outdata/cint.srp.raw
Data_output_file: cint.0.5gf
Data_output_format: complex_real4
First_line (w.r.t. original_master): 1073
Last_line (w.r.t. original_master): 4302
First_pixel (w.r.t. original_master): 148
Last_pixel (w.r.t. original_master): 985
Multilookfactor_azimuth_direction: 10
Multilookfactor_range_direction: 2
Number of lines (multilooked): 323
Number of pixels (multilooked): 419

*************************************************** ****************
* End_filtphase:_NORMAL

*************************************************** ****************

29.3 Implementation

29.3.1 spatialconv

The complex interferogram is convoluted with a kernel by FFT’s. The card PF KERNEL specifies the 1D
kernel. The 2D kernel is computed as: PF KERNELT PF KERNEL, e.g. for a 3 point moving average 1D

95



Figure 29.3: Magnitude of filtered complex in-
terferogram. (Method: spatialconv.) A spatial
convolution with a kernel [1 4 9 4 1] was used.
Clearly a lot of detail is lost.

Figure 29.4: Phase of filtered complex interfero-
gram. (Method: spatialconv.) A spatial convolu-
tion with a kernel [1 4 9 4 1] was used. Clearly a
lot of detail is lost.

Figure 29.5: Magnitude of filtered complex inter-
ferogram. (Method: spectral.) A pointwise mul-
tiplication in the spectral domain by a 32 point
hamming filter was used, a blocksize of 32, and
an overlap of 4.

Figure 29.6: Phase of filtered complex interfero-
gram. (Method: spectral.) A pointwise multiplica-
tion in the spectral domain by a 32 point hamming
filter was used, a blocksize of 32, and an overlap
of 4.

96



Figure 29.7: Magnitude of filtered complex inter-
ferogram. (Method: goldstein.) parameters used
are alpha=0.5, smooth=3, overlap=4. This filter
seems to preserve most detail.

Figure 29.8: Phase of filtered complex interfer-
ogram. (Method: goldstein.) parameters used
are alpha=0.5, smooth=3, overlap=4. This filter
seems to preserve most detail.

kernel

1

3
[111] (29.1)

This becomes

1

9





1 1 1
1 1 1
1 1 1



 (29.2)

The blocksize for the convolution is chosen as high as possible. A 2D kernel can be specified in an input file .
Only odd sized kernels can be used, but simply add a zero to an odd kernel.

If a real4 matrix containing phase should be convoluted by a certain kernel, first convert this real4 to a complex
real4 matrix. Do this either by computing the phase for complex umbers with amplitude 1, or by setting the
real part of the file to the phase and the imaginary part to 1 (arbitrary).

29.3.2 spectral

This method is implemented the same as goldstein method w.r.t. the overlap, blocksize etc. Algorithm per
block (SIZE,SIZE) is to perform a 2D FFT of the block, and then to multiply pointwise with the kernel, which is
padded with zeros. The kernel is centered around zero frequency.

29.3.3 goldstein

The algorithm is implemented as:

97



• Read in buffer Bi of PF BLOCKSIZE lines (overlap).

• Get block B=Bij as input block, see Fig. 29.9.

• B=fft2d(B) (obtain complex spectrum)

• A=abs(B) (magnitude of spectrum)

• S=smooth(A) (convolution with kernel)

• S=S/max(S) (S between 0 and 1)

• B = B · (S)α (weight complex spectrum)

• B=ifft2d(B) (result in space domain)

• If all blocks of buffer done, write to disk.

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

PF_BLOCKSIZE

complex interferogram

1 1 1

1 1 1

1 1

27

1

26

28

Output for this buffer (in this direction)

29

31

1
2

Per buffer

B11 ...

2 PF_OVERLAP

B12

Per block

2 PF_SMOOTH + 1

....

2 PF_OVERLAP

30

B11

3

4

32

1

B1

B1

lin
e 

(a
zi

m
ut

h)
 b

uf
fe

rs

B2

pixel (range) blocks

Figure 29.9: Buffering of complex interferogram in blocks for phase filtering.

For a block [pixlo:pixhi], e.g., [0:15], the output equals for an overlap (=3), [pixlo+overlap:pixhi-overlap], [3:12].
The number of output equals size-2overlap = pixhi-pixlo+1-2overlap = 10.

98



Chapter 30

UNWRAP

In this chapter the processing of step UNWRAP is described. This step is currently not implemented within the
Doris software. To obtain the unwrapped interferogram, you should use another software, for example one of
the routines of [Ghiglia and Pritt, 1998] which can be obtained by ftp at ftp.wiley.com/public/sci tech med/phase unwrapping.
These software should not be considered public domain, you ought to buy the book. The slant to height con-
version and geocoding can only be done with an unwrapped interferogram.

Recently ”snaphu” of Curtis Cheng was put in the public domain. It is recommended you install this software
as standalone executable, and continue with Doris for geocoding afterwards. METHOD snaphu can be used
from within Doris. But experience has to be gained how this software best performs.

Sometimes the coherence as computed by doris seems to contian NaNs (not-a-number). snaphu does not
expect this and exits when this happens. In Matlab the created coherence file can be easily corrected with,
e.g.,

q=freadbk(’9192_6687.coh’,2577,’float32’);
idxx=isnan(q);
idx=where(idxx==1);
q(idx)=0.0001;
fwritebk(q,’coh_no_nan’,’float32’);

If you use a standalone application to unwrap the interferogram, you might have to mimic the output as
described below, so Doris can obtain the current filename and dimensions for the unwrapped interferogram
from the interferogram result file .

30.1 Input Cards

For the snaphu program, please also refer to their website and read the man page. Doris is a wrapper for
a system call to the executable snaphu. Therefore, a program called snaphu should be executable and in
your path. An input file for snaphu is created in the current directory. You can rerun snaphu with a changed
inputfile from the prompt if required (but keep same output file name, format as it is in the result file for the
interferogram.) We assume to unwrap the complex interferogram, mph format always for snaphu.

UW METHOD SNAPHU | TREEFRAMON
Select method for unwrapping. For general users, if they have installed the Snaphu
program, this will make a system call. Other methods are not available fur public domain.

UW OUT FILE uint.hgt
Output filename of unwrapped interferogram.

99



UW OUT FORMAT HGT | REAL4
Output format of unwrapped interferogram.

UW SNAPHU MODE TOPO | DEFO | SMOOTH | NOSTATCOSTS
Output format of unwrapped interferogram. Snaphu options -t, -d, -s respectively. Refer
to snaphu manual for more information.

UW SNAPHU COH filename
use specified file for correlation values. This file must be registered and have the same
number of looks. Snaphu option -c. Refer to snaphu manual for more information.

UW SNAPHU LOG filename
Output log file name for snaphu option -l. Refer to snaphu manual for more information.

UW SNAPHU INIT MST |MCF
Output log file name for snaphu option -l. Refer to snaphu manual for more information.

UW SNAPHU VERBOSE ON |OFF
snaphu option -v. Refer to snaphu manual for more information.

30.2 Output Description

At successful exit the process control flag is switched:

unwrap: 1

The section for the unwrapping in the result file for the interferogram looks like the following for method
TREEF (file name and format are used later):

*************************************************** ****************
* _Start_unwrap:

*************************************************** ****************
Data_output_file: Outdata/uint.raw
Data_output_format: real4
Data_output_file_regions: Outdata/regions.raw
Data_output_format: short int (2B)
First_line (w.r.t. original_master): 1001
Last_line (w.r.t. original_master): 2105
First_pixel (w.r.t. original_master): 501
Last_pixel (w.r.t. original_master): 700
Multilookfactor_azimuth_direction: 10
Multilookfactor_range_direction: 2
Program for unwrapping: treef_ramon
Output program for unwrapping: ramon.uw
Delta lines for seed: 100
Delta pixels for seed: 100
Number of patches used: 1

*************************************************** ****************
* End_unwrap:_NORMAL

*************************************************** ****************

If the ’Data output format:’ is ’real4’, then the output is assumed to be real4 unwrapped phase values. If the
unwrapping was not successful, these pixels are set to -999. and ignored for slantrange to height conversion
and differential insar.

100



The ’Data output format:’ of the unwrapped interferogram also can be ’hgt’, a band interleaved format (ampli-
tude, phase) for SNAPHU. For more details on the definition if unwrapping went wrong, see Annex D.

101



Chapter 31

DINSAR

This chapter describes the processing step DINSAR, which stands for (3 or 4 pass) differential interferometry.

Three pass differential interferometry is described in [Zebker et al., 1994]. It is a method to remove the to-
pographic induced phase from an interferogram containing topography, deformation, and atmosphere. This
module thus can also be used to study atmospheric effects in interferograms, if no deformation is expected.

This step can be performed if an unwrapped topography interferogram (topo pair) and a complex deformation
interferogram (defo pair) are present (with a common master, perform 2 seperate runs of Doris to achieve
this). The interferograms have to be corrected for the phase of the ’flatearth’ (see step SUBTRREFPHA), and
sampled on the same grid (see step RESAMPLE). The files must have the same multilook factors and the
same dimensions (i.e. overlap exactly). The perpendicular baseline of the topo-pair should be larger than that
of the defo-pair, to prevent that noise is blown up, but this cannot always be controlled of course.

This step is performed in the defo-pair processing tree. First create a directory to run the topo-pair processing
until a unwrapped interferogram is obtained (keep the master, slave, and products result files ). Then perform
the defo-pair processing. After interferogram generation and ’flatearth’ subtraction, start this step (DINSAR),
specifying the location of the result files of the topo-pair processing with input cards. For 3 pass, use a
common master. For 4 pass, coregister the complex interferogram on the complex interferogram of the defo-
pair, and then unwrap, or first coregister master and slave on the master of the deformation pair.

To geocode the differential phase values, geocode the topo-interferogram and use the latitude/longitude ma-
trices for the differential grid.

31.1 Input Cards

DI OUT FILE differentialinterf.raw
Output filename for complex real4 file with differential phase (in slant range system).

DI IN TOPOMASTER same as master result file card
Specify this card if 4 pass differential interferometry is required. Do not use this card for
3 pass, or use the same name as the master result file for the defo pair (see chapter
2). Filename of the master of the topo-pair. To obtain the orbit and other parameters for
the topo master.

DI IN TOPOSLAVE result file name
Filename of the slave of the topo-pair. To obtain the orbit and other parameters for the
primary slave.

DI IN TOPOINT result file name

102



Filename of the interferogram result file of the topo-pair. To obtain the name and di-
mensions of the unwrapped (topography) interferogram.

DI OUT SCALED filename
Filename for optional (debug) output of a real4 file with scaled (with ratio of perpendic-
ular baselines) unwrapped topo interferogram.

Example of the cards for this step:

c
c
comment ___ DINSAR 3 PASS ___
c

DI_OUT_FILE ./Outdata/difg.raw
c DI_IN_TOPOMASTER /data/project/topo/master.res // if 4 pass method

DI_IN_TOPOSLAVE /data/project/topo/slave.res
DI_IN_TOPOINT /data/project/topo/products.res

c DI_OUT_SCALED ./Outdata/scaled.raw // debug

31.2 Output Description

In the defo processing result file for the products, the process control flag for dinsar is switched on.

dinsar: 1

A complex real4 (’mph’) file is created with the wrapped differential phase. (The amplitude is the same as that
of the original ’deformation’ interferogram). A complex value (0,0) indicates unwrapping was not ok.

If the the debug version of Doris is used (compiled with DEBUG) then ascii matrices are dumped for
Linenumber, Pixelnumber, Bperptopo, Bperpdefo, and Ratio.

Figures 31.1, 31.2, and 31.3 give example of output.

31.3 Implementation

See also [Zebker et al., 1994]. See figure 31.4

Simple equations for topo-pair (no deformation, no atmosphere, no other errors, r1 ‖ r2)

θ = θ0 + δθ (31.1)

B‖ = r1 − r2 (31.2)

B⊥ = B cos(θ − α) = B cos(α− θ) (31.3)

B‖ = B sin(θ − α) = −B sin(α− θ) (31.4)

The baseline components, for points on the reference ellipsoid (h = 0) are

[B⊥]h=0 = B⊥0 = B cos(θ0 − α) (31.5)

[

B‖

]

h=0
= B‖0 = B sin(θ0 − α) (31.6)

The ’true’ phase of the interferogram is

φ = −4π

λ
B‖ (31.7)

103



Figure 31.1: Phase of complex ’topography’ interferogram (flat earth corrected, cropped). The area is dead
sea Israel. Temporal baseline is 1 day (tandem). The perpendicular baseline is approximately 105 meters.
This interferogram has been coregistered on the defo pair (31.2) by tricking Doris.

Figure 31.2: Phase of complex ’deformation’ interferogram (flat earth corrected, cropped). The area is dead
sea Israel. Temporal baseline is 28 months day. The perpendicular baseline is approximately -30 meters.

104



Figure 31.3: Phase of differential complex interferogram (result of step DINSAR, cropped). The area is dead
sea Israel. The topography is removed from the original interferogram (Figure 31.2) by scaling the topography
interferogram (Figure 31.1). The perpendicular baseline is approximately 30 meters.

And corrected for the phase of the reference body

φ = −4π

λ
(B‖ −B‖0) (31.8)

For the defo-pair (1,3), denoted with a prime, similar equations follow. Deformation in the line of sight (range),
that occurred in between the acquisitions, is denoted by ∆r

∆r = − λ

4π
φ∆r (31.9)

A positive ∆r implies deformation in the B‖ direction (away from the sensor, i.e., subsidence). The phase of
this interferogram is

φ′ = −4π

λ
(r1 − (r3 + ∆r)) = −4π

λ
(B‖

′ + ∆r) (31.10)

Combining the expressions for the interferometric phase for the topo-pair (31.7) and defo-pair (31.10) yields:

φ′ = φ
B‖

′

B‖
+

4π

λ
∆r (31.11)

The problem here is that the ’true’ parallel baselines are unknown.

The (actually wrapped) phase of the deformation interferogram, corrected for reference phase, is defined as:

φ′ = −4π

λ
[B‖

′ −B‖0
′ + ∆r] (31.12)

= −4π

λ
[B′ sin(θ − α′)−B′ sin(θ0 − α′) + ∆r]

= −4π

λ
[B′ sin(β′ + δθ)−B′ sin β′ + ∆r]

105



where β′ = θ0 − α′. Using the approximation for small δθ (which is about 1◦ or 0.0175 rad for terrain height
differences of 5 km)

sin(β + δθ) = sin β cos δθ + cosβ sin δθ ≈ sinβ + δθ cosβ (31.13)

it follows from equation 31.13 that the ’flat earth’ corrected phase equals

φ′ = −4π

λ
[B′(sin β′ + δθ cosβ′)−B′ sinβ′ + ∆r] (31.14)

= −4π

λ
[δθB′ cosβ′ + ∆r]

= −4π

λ
δθB⊥0

′ − 4π

λ
∆r

The corrected phase for the topo pair equals φ = − 4π
λ

δθB⊥0 (using the same approximation), and combining
this with 31.15 yields (for the ’flat earth’ corrected phases)

φ′ = φ
δθB⊥0

′

δθB⊥0

− 4π

λ
∆r = φ

B⊥0
′

B⊥0

− 4π

λ
∆r (31.15)

or

∆r = − λ

4π
[φ′ − φ

B⊥0
′

B⊥0

] (31.16)

or for the phase φ∆r caused by the deformation ∆r

φ∆r = φ′ − B⊥0
′

B⊥0

φ (31.17)

This important equation shows how to obtain offset vectors from 3 SLC images, i.e., by scaling the (reference
phase corrected) unwrapped phase of the topo-pair by the ratio of the perpendicular baselines (to points on
reference body), and subtracting this from the phase of the defo-pair. This can thus be performed without the
’true’ values for θ are required.

31.3.1 Algorithm

Input is the unwrapped topo-interferogram (corrected for ’flat earth’). Format is hgt, or real4. Not unwrapped
thus indicated by NaN==-999. (real4) or if amplitude==0 (hgt). Defo-interferogram is wrapped (complex real4,
mph) (specified in interferogram result file ).

1. Obtain orbit for topo-slave (result file ). Obtain filename/dimension of unwrapped interferogram (result
file ).

2. Read in matrices, appropriate size/format etc. per line. Check if they exactly overlap.

3. Compute B⊥ and B⊥
′ on a small grid (20x10 points over the image).

4. Model the ratio of the perpendicular baselines by a 2D polynomial of degree 1. (r(l,p) = a00 + a10l +
a01p) Give statistics for max. error due to modelling. (It seems the ratio hardly changes over the image
for ERS1/2).

5. Compute wrapped deformation phase (phase corrected for topography) with formula 31.17, using the
modeled ratio rij . (Actually compute it complex: cij∗ = cos(rij · φ)− i sin(rij · φ).)

6. Set not unwrapped regions to (0.,0.)

7. Write output file (complex real4, mph format). (if a problem with unwrapping occurred, write (0,0).) If
requested, also write the scaled unwrapped interferogram.

106



Figure 31.4: Geometric configuration for 3-pass differential insar. The orbits go ’into’ the paper. All angles
are defined counterclockwise. The terrain element P corresponding to the radar coordinate (l,p) is located at
a height h above the ellipsoid. The perpendicular baseline required for this method is the one for points P
located on the reference ellipsoid (h = 0). δθ, the change in θ since P is on a height h, due to a 5 km height
difference, is approximately 1◦.

107



Chapter 32

SLANT2H

In this chapter the processing of step SLANT2H is described. In this step in principle the heights in the radar
coded system are computed. However with the exact method, the geocoding can be done in the same step.

The results of the three implemented methods are different, so a comparison has been made.

Processing is in buffers for all methods, while it is possible just to do it line by line. In case a polynomial has
to be evaluated (rodriguez method) it is more efficient to have a buffer.

32.1 Input Cards

S2H METHOD ambiguity | schwabisch | rodriguez
Method selector. ambiguity geocodes as well, uses height ambiguity to compute the
height. schwabisch method uses polynomials to compare the phase with the reference
phase. rodriguez method uses geometry, contains an approximation, it is not clear how
to compute a certain parameter.

S2H OUT HEI hei.raw
Output file name for computed height values.

S2H OUT PHI phi.raw
Only for ambiguity method. Output file name for computed phi values (latitude).

S2H OUT LAM lam.raw
Only for ambiguity method. Output file name for computed lambda values (longitude).

S2H NPOINTS 200
Only for schwabisch method. the number of locations to compute the reference phase
at different altitudes.

S2H DEGREE1D 2
Only for schwabisch method. the degree of the 1d polynomial to fit reference phase
through at every location.

S2H NHEIGHTS s2h degree1d+1
Only for schwabisch method. the number of heights to evaluate the reference phase.
minimum is default.

S2H DEGREE2D 5

108



Only for schwabisch method. the degree of the 2d polynomial to fit 1d coefficients as
function of location.

Example input:

c
c
comment ___ SLANT 2 HEIGHT CONVERSION ___
c
S2H_METHOD schwabisch
S2H_NPOINTS 500
S2H_DEGREE1D 2
S2H_NHEIGHTS 3
S2H_DEGREE2D 5
S2H_OUT_HEI Outdata/hei.schw

c
c S2H_METHOD ambiguity
c S2H_OUT_HEI Outdata/hei.ambi
c S2H_OUT_LAM Outdata/lam.ambi
c S2H_OUT_PHI Outdata/phi.ambi
c
c S2H_METHOD rodriguez
c S2H_OUT_HEI Outdata/hei.rodr

Figure 32.1: Geometric configuration for slant to height conversion.

109



32.2 Output Description

The process control flag is switched at successful exit:

slant2height: 1

An example of the output in the products result file :

*************************************************** ****************
* _Start_slant2h

*************************************************** ****************
Method: schwabisch
Data_output_file: Outdata/hei.schwabisch
Data_output_format: real4
First_line (w.r.t. original_master): 1001
Last_line (w.r.t. original_master): 2105
First_pixel (w.r.t. original_master): 501
Last_pixel (w.r.t. original_master): 700
Multilookfactor_azimuth_direction: 10
Multilookfactor_range_direction: 2
Ellipsoid (name,a,b): WGS84 6.37814e+06 6.35675e+06

*************************************************** ****************
* End_slant2h:_NORMAL

*************************************************** ****************

In the output files the height is stored. (number of lines etc. multilooked unwrapped interferogram.) etc.

32.3 Implementation

32.3.1 Method ambiguity

This method yields first the heights of the (line,pixel) and the position P(x,y,z). In this manner the geocoding
can be done in the same step. by converting P(x,y,z) (known h) to phi,lambda. If there is a trend in the height
this has to be removed first, e.g. by using tiepoints. This means the computed phi and lambda matrices are
not correct anymore.

With the baseline defined as in Annex D the following equations hold.

B‖ = r1 − r2 (32.1)

B‖ = B sin(θ − α) (32.2)

B⊥ = B cos(θ − α) (32.3)

Note the sign, must be minus.

φi = −4π

λ
ri + φobj (32.4)

Content of unwrapped interferogram (never mind the -phiR).

φ = φ1 − φ2 − φR = −4π

λ
B‖ − φR (32.5)

dφ

dθ
= −4π

λ

dB‖

dθ
= −4π

λ
B⊥ (32.6)

Geometric equation:

h = H − r1 cos θ (32.7)

110



dh

dθ
= r1 sin θ (32.8)

Height ambiguity:

dh

dφ
=

dh

dθ

dθ

dφ
= − λ

4π

r1 sin θ

B⊥
= − λ

4π

r1 sin θ

Bh cos θ + Bv sin θ
(32.9)

Final equation to convert phase to height:

h = − λ

4π

r1 sin θ

Bh cos θ + Bv sin θ
φ (32.10)

The procedure to compute the height is as follows (note that computation is skipped if unwrapping went wrong,
indicated by NaN (not a number) in the unwrapped interferogram.)

1. for all lines

(a) .i1. compute Bh and Bv (by computing h for middle pixel, then compute baseline).

(b) .i2. hcurrent = 0

(c) for all pixels

i. .j1. if value unwrapped phase equals NaN ≡ -999 then goto next pixel

ii. .j2. compute θ (corresponding to h)

iii. .j3. hlast=hcurrent, compute hcurrent with formula

iv. if ((hlast - hcurrent ) > k) then goto .j2.

32.3.2 Method rodriguez

Use same definitions as exact method, see also Annex D. See also [Rodriguez and Martin, 1992]. This
method uses the geometry to compute sin(θ − α). There are two errors in it for now. First H is not computed
exact. Second the baseline parameters are not computed exact per line. P is evaluated at reference surface
and S according to that position. This means that if the orbits are not parallel the point S is not computed
correctly, which introduces errors in the baseline computation. The co-registration model is better used for
that.

Known:
r1 range to M,P
position M
B baseline
ξ baseline orientation with regard to (equals our def. of alpha)

Compute:
theta (angle state, look: with formulas exact (no iterations)
H height sat above some surface ?? how to compute this exact??

The following we derived for our baseline definition: (beta = angle (2-1,P-1) counterclockwise:)

β = ∠(2− 1, P − 1) (32.11)

cosβ = cos(
1

2
π + (α− θ)) (32.12)

= sin(θ − α) (32.13)

(r1 −B‖)
2 = r2

1 + B2 − 2r1B cosβ (32.14)

111



sin(θ − α) =
(r1 −B‖)

2 − r2
1 −B2

−2Br1

(32.15)

B‖ = − λ

4π
φ (32.16)

So theta can be solved for exact with these formulas. Note:

θ − α = arcsin
(r1 −B‖)

2 − r2
1 −B2

−2Br1

= x (32.17)

θ = arcsinx + α ∨ θ = π − arcsinx + α (32.18)

I did not find an efficient way to always use the right expression yet. Now I use the fact that theta is about 20
degrees, but it should be possible to find out quadrants.

Compute H from known: theta, position Master (rho1), r1 In triangle (1,P,0) three Start with cosine law for line
across theta = p

p2 = ρ2
1 + r2

1 − 2rho1r1 cos θ (32.19)

Then compute cosine of angle mu across r1 in same triangle

r2
1 = ρ2

1 + p2 − 2rho1p cosµ (32.20)

Unclear how to compute H exact. for now use approximation. (set radius of earth at location of satellite equal
to radius at location of P) compute satellite height by Bowring’s method (xyz2ell) then radius R of earth at
phi,lambda to satellite:

R = ρ1 −Hsat (32.21)

Approximate H in this way

H = ρ1 −R cosµ (32.22)

Compute error of this approximation (preliminary study! ):

This will cause a bias and some trend in the height. Because there likely already is a trend due to orbit errors,
this is not as bad as it might seem. By using tie points a good height may be computed. For now we did not
implement a routine that uses tie points.

New way of computing H: (NOT implemented, to difficult)

1. compute in new system (x,y) coordinates of 1(0,rho1), P(..),...

2. ellips equation in tje same system, rotated over co-latitude

3. snijpunt P,ellips := R

4. H = rho1-Rq

Problems with this method: how do you know orientation of theta? rotation of ellips to new system.

A few more notes:

B‖ = − λ

4π
(φ + φR) (32.23)

So the reference phase has to be added again in order to compute Bpar. (otherwise Bpar is 0.001 m or so.)

Processing:

1. per line compute B,alpha;

112



2. per pixel

(a) phi to Bpar

(b) r known

(c) compute theta (exact?)

(d) compute p

(e) compute mu

(f) compute H

(g) compute h

The idea is to compute H from the position of M. (H can be computed by (reference needed) as shown.) And
then to find theta=f(B,phi,r). And then find h with the first equation. This method is implemented to check our
exact method, the results are very different.

In this method the point P does not have to be computed. (though in order to compute baseline components
we will compute a point P on height h (evaluate, iteratively) once for every line.)

A better way might be to use the co-registration model to compute the point S.

32.3.3 Method schwabisch

This method is described in [Schwäbisch, 1995]. It is a fast method that yields the radar coded heights. It is
based on the idea to first compute the reference fase at a number of heights and then to compare the actual
phase from the interferogram with these values to determine the height.

A problem is that the interferogram does not contain the reference phase anymore, so that has to be added
to the estimated phi.

It uses a number of steps which are described below.

1. Compute reference phase at a NL locations (line,pixel) at NH (=3) heights (0, 2000 and 4000m).
for h=0, 2000, 4000:

• ellips.a=wgs84.a+h, ellips.b=wgs84.b+h

• compute position of master satellite, corresponding point P on ellips and position of slave satellite,
see annex D.

• B‖ = r1 − r2

• φR = − 4π
λ

B‖

• store the values and locations and heights.

Note that the reference phase defined like this typically is something like 5000 (rad) even for h=0.
Therefor the reference phase for h=0 is set to 0, (because in the unwrapped interferogram the reference
phase is removed, if the phase of the unwrapped interferogram is 0, then this should yield a height of 0)
and the reference phase for height h is set to refphaseh - refphase0. (This makes the computations as
done later a little stupid, to estimate coefficients which are by definition equal to 0.) (An other possibility
is not to do this here, but later when the functions are evaluated to add the reference phase to each
pixel. I have tested this and the results are identical (+- .4m))

2. Compute for each location a polynomial (1d degree 1dD (= NH-1)) to describe the height as a function
of reference phase at these points.
For each location it holds (φi for height i):

h = 0 = α0 + α1φ0 + α2φ
2
0 (32.24)

h = 2000 = α0 + α1φ1 + α2φ
2
1 (32.25)

h = 4000 = α0 + α1φ2 + α2φ
2
2 (32.26)

So it is easy to solve (exact) for αi per location.

113



3. Compute (1dD+1=NH) polynomials to describe the coefficients of the previous step as a function of
location. (now, for a random location, the coefficients of height as a function of the reference phase can
be computed.) For example for α0 computed at NL locations (l,p) a 2d polynomial can be used:

α0lp
= β00 + β10l + β01p + β20l2 + ...

=
∑d

i=0

∑i

j=0 βi−j,j l
i−jpj (32.27)

A linear system can be easily set up and solved (least squares) by cholesky factorization. A rescaling
needs to be applied to avoid instability. The system can be solved simultaneously for all alphas, because
the normal matrix (and factorization) remains the same, but somehow our cholesky routine introduced
an error (which is probably caused by using fortran in c) so we just solve 3 seperate times with the same
factored normalmatrix.

4. Evaluate for all points at (line,pixel) with ok unwrapped phase the 2d polynomial to obtain the coefficients
of the height(phi) function. Then evaluate the 1d polynomial to obtain the height.
For all (l,p) with ok unwrapped phase:

• Compute the alphas.
For betas appropriate to alpha0:

α0 =

d
∑

i=0

i
∑

j=0

βi−j,j l
i−jpj (32.28)

• For betas appropriate to alpha1:

α1 =

d
∑

i=0

i
∑

j=0

βi−j,j l
i−jpj (32.29)

• repeat computing alphas until you have them all (1dD+1).

• Compute the height.

h =

1dD
∑

i=0

αiφ
i (32.30)

32.4 Comparison of the methods

Here a simple test is described that was performed to see the differences between the methods. A unwrapped
interferogram was obtained of the Veluwe (Holland) by processing the bottom half of the Tandem images 3512
(ERS2) and 23185 (ERS1). The interferogram was multilooked by 40x8, resulting in 367 lines and 610 pixels.
There were about 3 fringes.

Baseline:
B = 185m, α = 3◦

B‖ = −62, B⊥ = −173
Bh = −184, Bv = −2

The processing was done with a debugger version of the Doris software, so the cpu times are not really
representative for the performance of Doris. table 32.1 shows some processing parameters.

Figure 32.2 and 32.3 show plots for these three methods. Figure 32.4 shows a comparison between schwabisch
and ambiguity method.

It can be seen there is a trend between schwabisch and ambiguity. And there is an offset with rodriguez.

Schwabisch method is always higher then ambiguity, suggests error in computation of baseline parameters?

114



0 50 100 150 200 250 300 350 400
−200

−150

−100

−50

0

50

100

150
comparison slant to height methods

azimuth [line number]

h 
[m

]

ambiguity 
schwabisch
rodriguez 

Figure 32.2: Comparison methods in azimuth direction for line 250.

50 100 150 200 250 300 350 400 450 500 550 600
−300

−250

−200

−150

−100

−50

0

50

100

150

200
comparison slant to height methods

range [pixel number]

h 
[m

]

ambiguity 
schwabisch
rodriguez 

Figure 32.3: Comparison methods in range direction for pixel 110.

115



Table 32.1: Processing with the methods

Method cpu options remarks
Ambiguity 60 - geocoding as well
Schwabisch 12 1000 pnts, 1d=2, 2d=5 -
Rodriguez 4 - -

Figure 32.4: Comparison ambiguity, schwabisch methods for total image.

Some other tests also showed that the method Schwabisch, as implemented in Doris, seems to yield a (more
or less) scaled version of the height of the ambiguity method. (The schwabisch being higher).

After rescaling (with a factor 0.86) of the heights obtained by schwabisch method to the level of the ambiguity
method, the differences between both methods were only a few meters.

116



Chapter 33

GEOCODE

In this chapter the processing of step GEOCODE is described. In this step the radar coded heights are
converted to geocoded coordinates (i.e., to a known reference system).

Input is the height file from the step SLANT2H. Output are two files containing the latitude (phi) and longitude
(lambda) corresponding to the height file.

These files can be further processed with programs cpxfiddle, proj, and GMT to create a DEM in a regular grid
in any projection desired (UTM for example). See the bin directory and the shell scripts there for examples
how to do this. Likely, for each specific application, these scripts are best copied and adapted to your needs.
The interpolated matrices from GMT are in grd format that can be handled by Matlab, etc.

33.1 Input Cards

GEO OUT PHI geo phi.raw
Output file name for latitude.

GEO OUT LAM geo lam.raw
Output file name for longitude.

Example input:

c
c
comment ___ GEOCODING ___
c

GEO_OUT_LAM Outdata/lam.raw
GEO_OUT_PHI Outdata/phi.raw

If you want to obtain the latitude/longitude of the pixels in an interferogram that was created, but you do not
have a DEM in radarcoordinates available, you will have to create one. This means that you will have to edit
the products result file and create a SLANT2H section, see Chapter 32 for a description of this section in
the products result file . The section will look something like:

117



*************************************************** ****************
* _Start_slant2h:

*************************************************** ****************
Method: schwabisch
Data_output_file: Outdata/dummy_height.raw
Data_output_format: real4
First_line (w.r.t. original_master): 1001
Last_line (w.r.t. original_master): 2105
First_pixel (w.r.t. original_master): 501
Last_pixel (w.r.t. original_master): 700
Multilookfactor_azimuth_direction: 10
Multilookfactor_range_direction: 2
Ellipsoid (name,a,b): WGS84 6.37814e+06 6.35675e+06

*************************************************** ****************
* End_slant2h:_NORMAL

*************************************************** ****************

(Also set the pcf to 1 on top of the products result file .) If you have an external DEM you can compute the
required file (Outdata/dummy height.raw) using step COMPREFDEM. The dimensions and multilooking can
be copied from the interferogram section.

If your area is flat, you may want to use a dummy file filled with zeros. You can create such a file with
appropriate dimensions using Matlab for example. Alternatively, the much faster Unix way would be along
these lines. First compute the height (number of lines) of the dummy file:

echo "(2105-1001+1)/10" | bc -l 110.5

then the width (number of pixels):

echo "(700-501+1)/2" | bc -l 100

(ie., the file should be 110 lines by 100 pixels of 4 byte). Now create the file using dd:

dd if=/dev/zero of=Outdata/dummy_height.raw count=110 bs=40 0

33.2 Output Description

The process control flag is switched at successful exit:

geocoding: 1

An example of the output in the products result file :

*************************************************** ****************
* _Start_geocode

*************************************************** ****************
Data_output_file_hei (slant2h): Outdata/hei.ambi
Data_output_file_phi: Outdata/phi.raw
Data_output_file_lamda: Outdata/lambda.raw
Data_output_format: real4
First_line (w.r.t. original_master): 1001
Last_line (w.r.t. original_master): 2105
First_pixel (w.r.t. original_master): 501
Last_pixel (w.r.t. original_master): 700
Multilookfactor_azimuth_direction: 10
Multilookfactor_range_direction: 2

*************************************************** ****************
* End_geocode:_NORMAL

*************************************************** ****************

118



33.3 Implementation

Known are the heights of each pixel in the master (line,pixel) system. The point P(x,y,z) corresponding to a
(line,pixel) is computed with the 3 equations (see Annex D) in such a way that it lies on an ellipsoid of height
h above the refernce ellipsoid. When these coordinates are known, the equations of Bowring are used to
transform them to an ellipsoid system (φ, λ, h). The semimajor axis is denoted by a, and the semiminor axis
is denoted by b. The squared first eccentricity by:

e2 =
a2 − b2

a2
(33.1)

The squared second eccentricity by

e′2 = 1− e2 =
a2 − b2

b2
(33.2)

r =
√

x2 + y2 (33.3)

ν = arctan2(z · a), (r · b)) (33.4)

sin3 = sin3 ν (33.5)

cos3 = cos3 ν (33.6)

φ = arctan2((z + e′2 · b · sin3), (r − e2 · a · cos3)) (33.7)

λ = arctan2(y, x) (33.8)

N =
a

√

1− e2 sin2 φ
(33.9)

h =
r

cosφ
−N (33.10)

119



Bibliography

[Arikan et al., 2008] Arikan, M., van Leijen, F., Guang, L., and Hanssen, R. (2008). Improved image align-
ment under the influence of elevation. In Fifth International Workshop on ERS/Envisat SAR Interferometry,
‘FRINGE07’, Frascati, Italy, 26 Nov-30 Nov 2007, page 4 pp.

[Bähr and Vögtle, 1991] Bähr, H. P. and Vögtle, T. (1991). Digitale Bildverarbeitung: Anwendung in Pho-
togrammetrie, Kartographie und Fernerkundung. Wichmann Verlag, Karlsruhe.

[Curlander and McDonough, 1991] Curlander, J. C. and McDonough, R. N. (1991). Synthetic aperture radar:
systems and signal processing. John Wiley & Sons, Inc, New York.

[Eineder, 2003] Eineder, M. (2003). Efficient simulation of SAR interferograms of large areas and of rugged
terrain. IEEE Transactions on Geoscience and Remote Sensing, 41(6):1415–1427.

[Gatelli et al., 1994] Gatelli, F., Monti Guarnieri, A., Parizzi, F., Pasquali, P., Prati, C., and Rocca, F. (1994).
The wavenumber shift in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing,
32(4):855–865.

[Geudtner, 1996] Geudtner, D. (1996). The interferometric processing of ERS-1 SAR data. Technical Report
ESA-TT-1341, European Space Agency. Translation of DLR-FB 95-28.

[Geudtner and Schwäbisch, 1996] Geudtner, D. and Schwäbisch, M. (1996). An algorithm for precise recon-
struction of InSAR imaging geometry: Application to ”flat earth” phase removal, phase-to-height conversion,
and geocoding of InSAR-derived DEMs. In European Conference on Synthetic Aperture Radar, Königswin-
ter, Germany, 26–28 March 1996, Könogswinter, Germany.

[Ghiglia and Pritt, 1998] Ghiglia, D. C. and Pritt, M. D. (1998). Two-dimensional phase unwrapping: theory,
algorithms, and software. John Wiley & Sons, Inc, New York.

[Goldstein and Werner, 1998] Goldstein, R. M. and Werner, C. L. (1998). Radar interferogram filtering for
geophysical applications. Geophysical Research Letters, 25(21):4035–4038.

[Hanssen and Bamler, 1999] Hanssen, R. and Bamler, R. (1999). Evaluation of interpolation kernels for SAR
interferometry. IEEE Transactions on Geoscience and Remote Sensing, 37(1):318–321.

[Nitti et al., 2008] Nitti, D. O., Hanssen, R. F., Refice, A., Bovenga, F., Milillo, G., and Nutricato, R. (2008).
Evaluation of DEM-assisted SAR coregistration. In SPIE Europe Remote Sensing, Proceedings 15–18
September 2008, Cardiff, United Kingdom, pages 1–14.

[Rodriguez and Martin, 1992] Rodriguez, E. and Martin, J. M. (1992). Theory and design of interferometric
synthetic aperture radars. IEE Proceedings-F, 139(2):147–159.

[Samson, 1996] Samson, J. (1996). Coregistration in SAR interferometry. Master’s thesis, Faculty of Geodetic
Engineering, Delft University of Technology.

[Scharroo and Visser, 1998] Scharroo, R. and Visser, P. (1998). Precise orbit determination and gravity field
improvement for the ERS satellites. Journal of Geophysical Research, 103(C4):8113–8127.

[Schwäbisch, 1995] Schwäbisch, M. (1995). Die SAR-Interferometrie zur Erzeugung digitaler Geländemod-
elle. Forschungsbericht 95-25, Deutsche Forschungsanstalt für Luft- un Raumfahrt, Oberpfaffenhofen.

120



[Shewchuk, 1996] Shewchuk, J. R. (1996). Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator. In Lin, M. C. and Manocha, D., editors, Applied Computational Geometry: Towards Geometric
Engineering, volume 1148 of Lecture Notes in Computer Science, pages 203–222. Springer-Verlag. From
the First ACM Workshop on Applied Computational Geometry.

[Shewchuk, 2002] Shewchuk, J. R. (2002). Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications, 22(1-3):21–74.

[Touzi et al., 1996] Touzi, R., Lopes, A., and Vachon, P. W. (1996). Estimation of the coherence function
for interferometric SAR applications. In European Conference on Synthetic Aperture Radar, Königswinter,
Germany, 26–28 March 1996, pages 241–244.

[Wessel and Smith, 1998] Wessel, P. and Smith, W. H. F. (1998). New, improved version of generic mapping
tools released. EOS Transactions, AGU, 79(47):579.

[Zebker et al., 1994] Zebker, H. A., Rosen, P. A., Goldstein, R. M., Gabriel, A., and Werner, C. L. (1994).
On the derivation of coseismic displacement fields using differential radar interferometry: The Landers
earthquake. Journal of Geophysical Research, 99(B10):19617–19634.

121



Annex A

What’s new?

A.1 Version 4.02

• The script doris.process-reset.sh is renamed to doris.rmstep.sh and is updated for Mac OS X.

• plotcpm is updated to plot offsets rather than the offset residuals. Another script is made available under
the name plotcpm.residues to plot the offset residuals.

Bug fixes:

• Step COMPREFDEM: when multilooking applied during computation of reference DEM phase, the out-
put file was smaller than the expected size.

• Step COMPREFPHA: fixed index overflow in sinus look up table.

A.2 Version 4.01

• Handling of file sizes larger than 4GB on both 32-bit and 64-bit platforms.

• Processing of TerraSAR-X data.

• Improvement of the master-slave overlap calculation. The new algorithm should prevent segmentation
faults as sometimes experienced in the past.

• Improvement and speed-up of COMPREFDEM (see Chapter 26) based on a two-step approach. First,
the complete DEM is radarcoded and written to a file. Second, the radarcoded DEM is interpolated
to the master image geometry using Delaunay triangulation. The overlapping buffers, as in previous
versions of Doris, are prevented.

• Simulation of master amplitude image based on DEM (M SIMAMP), see Chapter 6.

• Estimation of master timing error based on correlation between master amplitude and simulated master
amplitude (M TIMING), see Chapter 7.

• Estimation of relative timing error between master and slave image (RELTIMING), see Chapter 18.

• DEM assisted coregistration (DEMASSIST), see Chapter 19. For optimal performance, apply after
M SIMAMP, M TIMING and RELTIMING.

• Coherence estimation after DEM subtraction (default), see Chapter 28.

• Utility construct dem.sh to download, merge and fill voids of SRTM data (see Section C.2.12).

122



• Utility doris.process-reset.sh to reset and clean up the processing entries in Doris result files allowing
to easily re-run a step or multiple steps (see Section C.2.13).

• Option to output height-to-phase conversion factors (H2PH) based on flat earth (SUBTRREFPHA ) or
DEM (COMPREFDEM).

• During COARSECORR and FINE coregistration NaN (not-a-number) correlation values, which are
mainly due to no data regions at the border of the scene, are eliminated automatically, but the whole list
of windows are kept in the doris.log file.

• Coherence output is properly scaled between 0 to 1 range with new option -r of cpxfiddle , see Chapter
C.2.3.

123



Annex B

Installation

In this annex the installation of Doris is described. To properly compile the Doris software, you might have
to edit the Makefile. Set the compiler (CC), compiler flags (CFLAGS), library path (LFLAGS), and defines
(comment DEF4 and DEF5 for VECLIB/LAPACK library usage). Use DEF7 ( X86PROCESSOR ) if you
have a little endian machine.

We have written a simple script ”configure” to help generate a user defined Makefile, which is present in the
Doris distribution, as well as a template Makefile that can be edited to your likings if the script fails.

We recommend compiling 2 versions of the Doris software. An optimal version for operational processing,
and a more verbose debug version that is only to be used if the optimal version exits with an unexplained
error. (Then repeat processing with debug version, track down routine, etc.)

Compilation of these two versions is best done by running ”make” two times, first with CFLAGS = CFLAG-
SOPT, then (after make clean) with CFLAGS = CFLAGSDEBUG. This is clearly described in the Makefile and
in the Makefile generator.

We have successfully compiled Doris with GNU g++ 2.x, 3.x, 4.x, Sun compilers, Intel compilers and so on.

If you have problems installing Doris, you can sent your questions to the email list of doris users. To join this
list, follow the directions at our internet site (http://enterprise.lr.tudelft.nl/doris/). Please don’t forget to specify
platform, compiler, versions etc.

B.1 Installation of Doris

B.1.1 Installation of the Doris core

After downloading the gzipped, tarred archive of the Doris software v4.02the installation is best done with a
Makefile. I assume you are familiar with ’make’ to compile code. If you are not, find someone who is.

1. Create a directory for Doris, e.g., mkdir /opt/doris v4.02
cd /opt/Doris v4.02

2. Download the archived Doris software via the download area of our webpages at
http://enterprise.lr.tudelft.nl/doris/: doris v4.02.tar.gz

3. Expand compressed files: gzip -d doris v4.02.tar.gz
This leaves a file doris v4.02.tar

4. Extract the files from the archive:
tar -xvf doris v4.02.tar

124



Now sub directories are created, bin , src , SARtools , ENVISAT TOOLS. The doris source files are in
src and bin. The other two are utilities that need to be compiled separately.

Now we are ready to compile Doris. cd to the src directory, and read the README file for the latest information.

1. Create a Makefile by running the script: configure
in the src directory. (”csh configure” or ”chmod 755 configure” if it is not executable.) This should limit
the editing in the Makefile. Follow the directions on the screen.

2. Compile Doris and install the executables:
- (in directory Source new; inspect/edit the Makefile)
- make (this compiles the code)
- make test (this should give the version number of Doris)
- make install (uses /usr/local/bin/ by default. Also the bin utilities are installed.)

3. Make sure the Installation directory is in your path. For (t)csh users, it should be in your .(t)cshrc file
(startup file). Add it with a (csh) command like:

set path = ( /usr/local/bin $path )

B.1.2 Installation of the SARtools

We also need to compile the SARtools and ENVISAT TOOLS programs. There are Makefiles in the sub-
directories provided, with default installation directories. If you selected another installation directory than
/usr/local/bin, please change that in the two Makefiles. What you have to do to install these utilities is:

1. cd SARtools

2. (review the Makefile)

3. make -n (check what happens)

4. make (compile software)

5. make -n install (check if this is what you want)

6. make install

B.1.3 Installation of the ENVISAT tools

And for the ENVISAT TOOLS

1. cd ENVISAT TOOLS

2. (review the Makefile)

3. make -n (check what happens)

4. make (compile software)

5. make -n install (check if this is what you want)

6. make install

We did not automate this because of the complexity, while simply editing two Makefiles should not be a big
problem.

125



B.1.4 Installation of the TERRASAR-X reader

For the use of Terrasar-X data, the following additional packages are required on your system (note the
minimum version numbers):

• gdal (version ≥ 1.44). See http://gdal.org for more information.

• python (version ≥ 2.2).

• libxml2 (version ≥ 2.7.2).

• python-lxml (version ≥ 2.0).

• libxslt (version ≥ 1.1.15).

In case your system does not meet these requirements and you cannot update, you can try an alternative
script. In that case, the requirements are

• gdal (version ≥ 1.44). See http://gdal.org for more information.

• python (version ≥ 2.2).

• libxml2 (version ≥ 2.6.30).

• python-lxml (version ≥ 1.3.3-1).

• libxslt not required.

To use the alternative script, go to your Doris bin directory and do:

cp tsx_dump_header2doris_no_xpath.py tsx_dump_header2 doris.py

to overwrite the original script.

B.1.5 Starting Doris ...

Now (after a rehash) we can run the Doris software and start InSAR processing! The run script in the bin
directory can be customized by setting the environment variables EDITOR and PAGER.

Note that it is highly adviced to install the utilities , see annex C, that can be found in the download area, and
GMT (visualization).

To use the Delft precise orbits it is convenient to have getorb on your system, but one could also use the
online version from http://www.deos.tudelft.nl/ers/precorbs/ .

B.1.6 Installation of utility scripts

In the Doris archive there are a number of utilities included which are required for optimal processing. (They
can be called from within Doris.)

The utilities in the bin directory are explained in section B.6. If these files are in your path and they can be
executed then they are installed ok. Doris writes the calling syntax of these utilities to standard out (as INFO),
so you can repeat the commands. For example (assuming the run script is used):

grep plotoffsets Outinfo/out. *
grep plotcpm Outinfo/out. *

126



yields for example

.Outinfo/out.input.fine_cpm.4926:INFO: plotcpm CPM_Da ta 1 5000 1 1000&

This command can be repeated from the prompt.

B.2 Additional programs

To obtain a full version of Doris, the getorb (precise orbits), GMT (mapping tool, helper for fine co-registration)
and gv or ghostview (to display postscript files in csh-script plotscript) should be installed on your system.
These programs can be obtained freely, but are not included in the Doris distribution.

At our homepage you can find out more on how to obtain these packages. (http://enterprise.lr.tudelft.nl/doris/).

B.3 Running the Doris software

You can run the Doris software by making an input file as described in this user’s manual. For full function-
ality, make sure that getorb/ghostview/gmt are in your path (add them in your $home/.cshrc file or in the
$home/.login file).

The command line options for Doris are:

• doris -v
Return version number.

• doris -h [search pattern]
Return help for ”search pattern”. (Calls the shell script helpdoris.)

• doris -q
Return random quote. (This option can be used to add random quotes to your mail. Make an alias for
e.g. elm or pine (mailprograms): ”alias elm ’doris -q ¿ /.signature; elm’” Then, the next time elm is
called, it first creates a .signature file in your home directory, which is appended to your mail message.)

• doris -c
Return copyright notice.

• doris inputfile
Run doris with the input specified in ”inputfile” (defaults to ”inputoptionsfile”).

For convenience we have developed a simple csh-script (named ”run” in the BIN directory) that can generate
a template input for you and that works as a shell for the actual processing.

You can run the Doris software by (for example, I assume you know the vi editor):

1. Make a directory: mkdir /data/kampes/Testdoris
Go to that directory: cd /data/kampes/Testdoris

2. Copy the run file for editing: cp /home/Doris/BIN/run .
Edit the run file, for bin directories, and remarks: vi run
Take a look at the help: run -h Generate input templates: run -g

3. Edit the generated input file : run -e1
Run the first step: run -s1

127



4. View output stout: run -v1
View output result file : run -r1
View output logfile: run -r4

5. Process next step: run -e2; run -s2; run -v2; etc.

B.4 Viewing the results of Doris

Annex C describes a number of tools to visualize the output of Doris. The parameter files, log file, etc. can
be viewed with any standard editor. For this, the run script utility can also be used, customized by setting the
PAGER and EDITOR environment variables.

The data output are binary files, which can be visualized with standard software on your system, e.g., Khoros,
Matlab (tip: try spinmap), etc.

The utility cpxfiddle (c++ in SARtools archive) can, amongst other things, generate SUNraster files of
the phase, magnitude, and magnitude+phase with a colormap of your liking (use, e.g., ”xv” or ”display” to
view/print.) This seems to be one of the fastest ways to see the results. See also the PREVIEW card.

The utility cpx2ps (csh script) can generate postscript code from complex files for the magnitude or phase.
(use gv or ghostview to view/print.) This utility uses the GMT package. (Tip: generate 2 m postscript files,
with -Z option, and view this enlarged interferogram with gv.)

If someone want to develop a Motif/Lesstif X windows application that would be very welcome. We have
experimented with these things, but no time to implement it in a robust way.

A tip might be to use X utilities like xmag or xlupe to zoom in on the visualized files.

128



B.5 Trouble shooting

B.5.1 General problems

In Tables B.1 and B.2 a number of possible problems and their solutions is given.

Table B.1: Troubleshooting #1

Problem Solution

Function FFT not found while linking You have no Veclib library. Change define statements in
Makefile. (Run the install script that generates the Makefile
again.) Consider adding a (library) routine for FFT to doris,
since the internal one is not optimized speedwise.

Compilation fails due to int16 problem with
var arg in ioroutines.c

Change code in ioroutines.c, routine checkrequest, from
int16 to int. (e.g. int16 N = va arg(arglist, int16) − > int
N = va arg(arglist, int); This happened with redhat 7.0, but
not sure if Doris still functions completely correct; It should
have no influence on the computations, only on user friend-
lyness, i.e., warnings if Doris thinks certain steps should not
be run.)

Compilation fails because compiler cannot
find include files

Change include files in source (e.g. #include < cctype >
to #include < ctype.h >). Particularly older compilers do
not know of the new standard (e.g., cctype).

Compilation fails due to strptime (Redhat
7.0?)

Remove comment before DEF8 in the Makefile. (i.e.: DEF8
= -D NO STRPTIME). (Remove object files with command
”make clean” not required). Compile again with command
”make”.

Run script doesn’t work at all Check first line of run script. There the interpreter (an ex-
ecutable program) is specified, for example !/bin/ksh. Does
this program exist? (test with command: ”which ksh”). For
redhat 7.0, who doesn’t include it in the distribution for some
strange reason, search the internet for a public domain
ksh (korn shell). (search at ”www.google.com” on ”+pdksh
+download”) Is the location correct? (make a symbolic link
as root)

129



Table B.2: Troubleshooting #2

Problem Solution

Run script doesn’t work properly Path not set to bindir (try if command ”doris -v” returns ver-
sion number) or GMT is not installed. Or directory not writable
(chmod).

Run script: editing option doesn’t work
properly/not to my liking

Use the environment variable EDITOR to specify your preferred
editor, for csh, include in your startup file .cshrc for example a line
”setenv EDITOR vi”

Run script: viewing option doesn’t work
properly/not to my liking

Use the environment variable PAGER to specify your preferred
viewer, for csh, include in your startup file .cshrc for example a
line ”setenv EDITOR vi”

Doris crashes at getting the Delft orbits Is getorb installed? Check location of orbdir (Doris input card).
Obtain the system command Doris parses from the stdout INFO,
repeat it from the command line.

Doris gets zero correlation in FINE coregis-
tration.

Is path to files correct (in master.res, slave.res)? Compile a debug
version of doris and run that to find out what goes wrong.

Doris cannot generate postscript while
coregistration.

Is GMT installed? Check script from prompt by using command
that is written as INFO to stdout. Consider using NOPLOT options
in Doris input.

Script plotoffsets or plotcpm does not work. Read the help by typing plotoffsets at the prompt. View the script
in an editor, try to detect the error. adding -x to the first line of
the script should echo all commands before execution. Run it
without the background option. What awk are you using? We
use gawk actually, but it should be standard POSIX. What is the
correct syntax for tail? (”-n +6” or ”-n+6” or ”+6”, the tail commands
have been removed from the new version)?

Doris leaves temporary files in the working
directory.

This should not happen, but sometimes these files are not re-
moved. If Doris exits normally, these files can be savely removed.
If Doris exits with an error, sometimes these files can be used to
repair the result files .

What is this file CPM data after FINE coreg-
istration?

This ascii file is used to generate plots with GMT.

Doris crashes on reading input. Try to find out with the debug version of Doris where it exactly
goes wrong. Some cards with optional ON OFF options need one
of these specified on some systems.

130



B.5.2 Matrix class troubles

Some users reported having problems compiling a template class which was implemented in different files. I
hope that by explaining my problems I might help someone else.

For the aCC compiler the flag +inst implicit include had to be used. This flag include the file matrixklasse.cc
(note: .cc) automatically.

Furthermore, for making an archive library, the member functions had to be instantiated explicitly, see file
matlib.c for how I did that. The friend functions also had to be instantiated, also see the Makefile and matlib.c.

We previously ran into some problems with the gnu g++ compiler version 2.95.2 and were not able to compile
Doris (explicit instantiation mechanism/parsing of friend template functions, bug in this version?). We solved
this problem by putting all definitions of the matrix class in one file and compiling without first creating a matrix
library. Doris v2.4 and higher should therefor be more compiler/platform independent. For developers this is
not quite so comfortable, because the code is less transparent this way.

If compilation as described above gives problems, try the following:

1. Try make -n processor.o (only echos command to the screen) and paste this from the prompt to give
you more direct control.

2. Do not use Veclib and Lapack libraries, even if you have them. To exclude them, define DEF4 and DEF5
in the Makefile (uncomment the defines). Now you will be making use of the internal routines, which are
based on numerical recipes routines.

3. Set verbose flags for compilation (-v likely, add to CFLAGS).

4. Try to compile object code for a individual source files, e.g., make processor.o and if successful, try
others. make swobjs does all.

5. If all .o files are compiled correctly, use make or make doris to link them.

6. Try another compiler (first make clean ).

B.5.3 Some notes on installation on SGI

This message was posted to the doris users email list. It may be of help if you are installing Doris on a SGI
platform. Thanks to Kamini Kanta Mohanty.

From : Kamini Kanta Mohanty <mohantykk@yahoo.com>

Subjec t : My Experience on DORIS
To : Ber t Kampes <kampes@geo. t u d e l f t . n l>
Cc : dor i s users@tude l f t . n l , kkm 10@hotmail . com

+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Dor is L i s t s e r v e r |
| ( D e l f t Object−or ien ted Radar I n t e r f e r o m e t r i c sof tware ) |
| |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

From : K.K . Mohanty
Marine and Water Resources D i v i s i o n
Space A p p l i c a t i o n s Centre ( ISRO )
Ahmedabad − 380 053 , INDIA
mohantykk@yahoo.com

7 July , 2000
To

Dear Dor is Users ,

At the outset , I would l i k e to thank Mr . Ber t Kampes ,
DEOS, D e l f t U n i v e r s i t y to make DORIS openly a v a i l a b l e

131



fo r download . I have downloaded DORIS 2.3 sof tware
sometime i n the middle o f May 2000. Subsequently , I
have i n s t a l l e d the same i n SGI ( S i l i c o n Graphics )
Octane w/ s w i th IRIX 6.4 o / s . I have executed many
steps i n the s /w ( not a l l ) . I would l i k e to share my
experience o f i n s t a l l i n g s /w i n SGI machine . Also ,
got some quer ies . May be a few suggest ions , which can
be taken care o f i n f u t u r e re lease .

I am new t o i n t e r f e r o m e t r y . I am based a t Space
A p p l i c a t i o n Centre ( ISRO ) , Ahmedabad , INDIA . I am also
an ITC , Netherlands alumni .

Experience During I n s t a l l a t i o n :
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1) complex type i n SGI i s a class ( not template )
suppor t ing only double type . I had to separa te ly b r ing
i n the complext . h from GNU. I t works f i n e .

2) Equ iva len t s o f a l l o ther inc ludes are ava i lab le ,
but . h ex tens ion has to be added ( fo r example ,
<iostream> has to be replaced by <ios t ream . h>)

3) The ios : : b ina ry mode i n f i l e open i s not requ i red
i n IRIX 6 . 4 . I understand i t ’ s t r u e f o r many unix
v a r i a n t s . I s imply removed i t , and then i t works .

4) In a l l d e c l a r a t i o n s such as , template mat r ix<TYPE>
opera to r ∗ TYPE2 ( const mat r ix<TYPE> &A, const
mat r ix<TYPE> &B ) ; i n mat l i b . c the keyword template has
to be replaced by keyword c lass . This i s a lso t r u e f o r
d e c l a r a t i o n f o r member f u n c t i o n s such as template
mat r ix<TYPE> c o r r e l a t e TYPE2 ( const mat r ix<TYPE> &A,
const mat r ix<TYPE> &B ) ;

5) During f i n a l l i n k i n g f o r making d o r i s executable ,
an undef ined symbol vo id
mat r ix<complex<f l o a t >>:: conj ( ) was complained by the
l i n k e r , even though i t was being generated by
c o n d i t i o n a l comip l ing f o r c r e a t i o n o f mat r i x l i b r a r y
i n mat r ixbasec lass . overloaded . This has most ly to do
w i th order o f l i n k i n g the l i b r a r i e s . I avoided t h i s by
s p e c i a l i z i n g the corresponding f u n c t i o n void
mat r ix<TYPE> : : conj ( ) as void
mat r ix<complex<f l o a t >>:: conj ( ) i n
mat r ixbasec lass . ovr loaded .

6) I get a l o t o f warning s t a t i n g m u l t i p l y
def ined : ( m a l l o c a l l o c : : oom malloc ( ) f o r d i f f e r e n t
p r i m i t i v e types . They can be ignored .

7) A f i n a l e r r o r i n i o r o u t i n e . c wh i le compi l ing i n
debug mode f o r l i n e i f ( compl4 ( 1 . 1 ) != complr4 ( 1 . 1 , 0)
s t a t i n g more than one != matches was repor ted . Since ,
i t was only f o r debugging mode, I avoided t h i s by
commenting t h i s l i n e . This may have to do w i th my
implementat ion o f complext . h from GNU.

Experience Running Dor is
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[ . . . ]

Mohanty , KK

[ . . . ]

132



B.5.4 Some notes on installation on Linux X86

Since July 2000 Doris can be installed to Linux X86 systems. The code needed some changes. Please refer
to the general problems section as well.

• Byte order on X86 systems. Use the functions htonl and htons to read the record length and data of the
SLC volume, leader, and data file.

• File io.

– (gcc compiler only?) ios::ate does not act as expected. It should open an input file stream at the
end, but it does not. ios::app (ofstream class) does work, as does a file.seekg(0,ios::end);

– ios::in (or out) has to be set, even for statements like ifstream ifile(ios::nocreate); The default and
logical, that a file is an input stream if it is declared ifstream, is not true for gcc compiler.

• strcmp. The statement strcmp(word,’\0’) gives a memory fault if tested.

B.5.5 Some notes on installation on Window running Cygwin

Bert Kampes reported installing Doris on Windows NT and XP running Cygwin without trouble beginning of
2002. The run/installation scripts needed some small changes. Here is the summary. It is assumed that a full
version of Cygwin installed, including tcsh, developing tools.

• There is no ksh and csh for Cygwin in standard setup? Therefor change the first line of the configure
script to tcsh, and use the new versions of the helpdoris and run script where a sh implementation is
used (instead of ksh). I linked csh to tcsh in the bin directory of my cygwin installation, which also works
fine, and prevents changing the scripts, i.e., ln -s /bin/tcsh /bin/csh.

• Install GMT tools.

• Install XFree86 and ghostview, xv, etc.

• i didn’t install getorb, and that may partly use a fortran compiler. (If someone has done this, please let
me know.)

• For convenience make a symbolic link to your cdrom drive, e.g., ln -s d: /cdrom. You can then refer to
SLC files on cdrom in the Doris input with /cdrom/SCENE1/...

B.6 List of files in archive

The following directories are created after ”tar -xvf Dorisv1.0.tar”:

• Bin csh-scripts, helper programs.

• Source new Source code Doris.

For example the following files are in the archive Dorisv2.5.tar (11 July 2000):

r−−r−−r−− 413/22 5767 Ju l 7 17:47 2000 Source new /\ makef i le
r−−r−−−−− 413/22 8998 Ju l 7 17:47 2000 Source new / constants . h
r−−r−−−−− 413/22 19441 Ju l 7 17:47 2000 Source new / convers ion . c
r−−r−−−−− 413/22 5641 Ju l 7 17:47 2000 Source new / convers ion . h
r−−r−−−−− 413/22 127641 Ju l 7 17:47 2000 Source new / c o r e g i s t r a t i o n . c
r−−r−−−−− 413/22 5020 Ju l 7 17:47 2000 Source new / c o r e g i s t r a t i o n . h
r−−r−−−−− 413/22 20883 Ju l 7 17:47 2000 Source new / f i l t e r i n g . c

133



r−−r−−−−− 413/22 1410 Ju l 7 17:47 2000 Source new / f i l t e r i n g . h
r−−r−−−−− 413/22 60217 Ju l 7 17:47 2000 Source new / geocode . c
r−−r−−−−− 413/22 3549 Ju l 7 17:47 2000 Source new / geocode . h
r−−r−−−−− 413/22 101161 Ju l 7 17:47 2000 Source new / i o r o u t i n e s . c
r−−r−−−−− 413/22 5289 Ju l 7 17:47 2000 Source new / i o r o u t i n e s . h
r−−r−−r−− 413/22 29980 Ju l 7 17:47 2000 Source new / matdoc . t x t
r−−r−−r−− 413/22 70878 Ju l 7 17:47 2000 Source new / mat r ixbk . cc
r−−r−−r−− 413/22 57993 Ju l 7 17:47 2000 Source new / matr ixspecs . c
r−−r−−−−− 413/22 51646 Ju l 7 17:47 2000 Source new / processor . c
r−−r−−−−− 413/22 56881 Ju l 7 17:47 2000 Source new / products . c
r−−r−−−−− 413/22 2587 Ju l 7 17:47 2000 Source new / products . h
r−−r−−−−− 413/22 130910 Ju l 7 17:47 2000 Source new / read input . c
r−−r−−−−− 413/22 15893 Ju l 7 17:47 2000 Source new / read input . h
r−−r−−−−− 413/22 42007 Ju l 7 17:47 2000 Source new / referencephase . c
r−−r−−−−− 413/22 3162 Ju l 7 17:47 2000 Source new / referencephase . h
r−−r−−−−− 413/22 1106 Ju l 7 17:47 2000 Source new / refsystems . h
r−−r−−−−− 413/22 72665 Ju l 7 17:47 2000 Source new / s tep1rout ines . c
r−−r−−−−− 413/22 1121 Ju l 7 17:47 2000 Source new / s tep1rout ines . h
r−−r−−−−− 413/22 11938 Ju l 7 17:47 2000 Source new / unwrap . c
r−−r−−−−− 413/22 844 Ju l 7 17:47 2000 Source new / unwrap . h
r−−r−−−−− 413/22 66820 Ju l 7 17:47 2000 Source new / u t i l i t i e s . c
r−−r−−−−− 413/22 9630 Ju l 7 17:47 2000 Source new / u t i l i t i e s . h
r−xr−x−−− 413/22 21633 Ju l 7 17:47 2000 Bin / he l pdo r i s
r−xr−xr−x 413/22 13534 Ju l 7 17:47 2000 Bin / plotcpm
r−xr−xr−x 413/22 13093 Ju l 7 17:47 2000 Bin / p l o t o f f s e t s
rwxr−xr−x 413/22 29621 Ju l 7 17:47 2000 Bin / run
r−xr−x−−− 413/22 548 Ju l 7 17:47 2000 Bin / viewanddel

You should add the Bin directory to your path. The utilities in the Bin directory are there for your convenience
and you may edit them the way you prefer. Possibly you need to make these files executable by the command:

chmod 755 Bin /∗

Bin / run Generate i npu t and s h e l l for running Dor is .
Bin / he l pdo r i s Summary of i npu t keywords . p r i n t w i th he l pdo r i s −p .
Bin / plotcpm Step coregpm : GMT show est imated e r r o r o f f se t−model , histograms , etc .
Bin / p l o t o f f s e t s Step f i n e : GMT to show o f f s e t vectors , thresholded on c o r r e l a t i o n .
Bin / viewanddel Step coregpm : background c a l l t o gv , t h e r e a f t e r delete (dummy) f i l e .

B.7 List of routines + description

The information in this section may be out of date .

The list is generated with the ctags command

˜ / . b in / ctags −u −x ∗ . [ ch ]∗ | grep −v matr ixspec |\
grep −v matr ixbk | grep func | cut −c1−20,39−600

0 sqr constants . h i n l i n e i n t 1 6 sqr ( i n t 1 6 x ) { return ( x∗x ) ;}
1 sqr constants . h i n l i n e i n t 3 2 sqr ( i n t 3 2 x ) { return ( x∗x ) ;}
2 sqr constants . h i n l i n e u i n t sqr ( u i n t x ) { return ( x∗x ) ;}
3 sqr constants . h i n l i n e rea l4 sqr ( rea l4 x ) { return ( x∗x ) ;}
4 sqr constants . h i n l i n e rea l8 sqr ( rea l8 x ) { return ( x∗x ) ;}
5 i n constants . h i n l i n e rea l8 i n ( cn P) const / / s ca la r product : r =P. i n (Q) ;
6 out constants . h i n l i n e cn out ( cn P) const / / cross product cn r =P. out (Q) ;
7 d i s t constants . h i n l i n e rea l8 d i s t ( cn P) const / / d i s tance : d=P . d i s t (Q) ;
8 min constants . h i n l i n e cn min ( cn P) const / / cn r =P. min (Q) ;
9 norm2 constants . h i n l i n e rea l8 norm2 ( ) const / / n=P. norm2 ( ) ;

10 norm constants . h i n l i n e rea l8 norm ( ) const / / n=P . norm ( ) ;
11 normal ize constants . h i n l i n e cn normal ize ( ) const / / cn R=P. normal ize ( ) ;
12 angle constants . h i n l i n e rea l8 angle ( cn A) const / / angle=A. angle (B ) ; / / 0 , p i ;

134



13 ecc1s t sq r constants . h i n l i n e void ecc1s t sq r ( ) / / f i r s t ecc .
14 ecc2nd sqr constants . h i n l i n e void ecc2nd sqr ( ) / / second ecc .
15 disp constants . h i n l i n e void disp ( ) const / / show content
16 l i n e s constants . h i n l i n e u i n t l i n e s ( ) const / / r e t u r n number o f l i n e s
17 p i x e l s constants . h i n l i n e u i n t p i x e l s ( ) const / / r e t u r n number o f p i x e l s
18 operator = constants . h window& operator = ( window X)
19 operator == constants . h bool operator == ( window X) const
20 operator != constants . h bool operator != ( window X) const
21 pol2xyz convers ion . c void pol2xyz (
22 xyz2pol convers ion . c void xyz2pol (
23 x y z 2 e l l convers ion . c void x y z 2 e l l (
24 x y z 2 e l l convers ion . c void x y z 2 e l l (
25 e l l 2 x y z convers ion . c void e l l 2 x y z (
26 deg2rad convers ion . h i n l i n e rea l8 deg2rad ( rea l8 x ) { return x ∗ PI / 180. ;}
27 deg2rad convers ion . h i n l i n e rea l4 deg2rad ( rea l4 x ) { return x ∗ PI / 180. ;}
28 rad2deg convers ion . h i n l i n e rea l8 rad2deg ( rea l8 x ) { return x ∗ 180. / PI ;}
29 rad2deg convers ion . h i n l i n e rea l4 rad2deg ( rea l4 x ) { return x ∗ 180. / PI ;}
30 l i n e 2 t a convers ion . h i n l i n e rea l8 l i n e 2 t a ( rea l8 l i n e , rea l8 ta1 , rea l8 p r f )
31 p i x 2 t r convers ion . h i n l i n e rea l8 p i x 2 t r ( rea l8 p i x e l , rea l8 t r1 , rea l8 rangesampl ingratex2 )
32 pix2range convers ion . h i n l i n e rea l8 pix2range ( rea l8 p i x e l , rea l8 t r1 , rea l8 rangesampl ingratex2 )
33 t a 2 l i n e convers ion . h i n l i n e rea l8 t a 2 l i n e ( rea l8 az i t ime , rea l8 ta1 , rea l8 p r f )
34 t r 2 p i x convers ion . h i n l i n e rea l8 t r 2 p i x ( rea l8 rangetime , rea l8 t r1 , rea l8 rangesampl ingratex2 )
35 c r 4 t o c i 2 convers ion . h i n l i n e compli16 c r 4 t o c i 2 ( complr4 x )
36 coarseporb i t c o r e g i s t r a t i o n . c void coarseporb i t (
37 coarsecor re l c o r e g i s t r a t i o n . c void coarsecor re l (
38 c o a r s e c o r r e l f f t c o r e g i s t r a t i o n . c void c o a r s e c o r r e l f f t (
39 c o r r f f t c o r e g i s t r a t i o n . c rea l4 c o r r f f t (
40 d i s t r i b u t e p o i n t s c o r e g i s t r a t i o n . c mat r ix<u in t> d i s t r i b u t e p o i n t s (
41 g e t o f f s e t c o r e g i s t r a t i o n . c void g e t o f f s e t (
42 f inecoreg c o r e g i s t r a t i o n . c void f i necoreg (
43 coherence f f t c o r e g i s t r a t i o n . c rea l4 coherence f f t (
44 coherencespace c o r e g i s t r a t i o n . c rea l4 coherencespace (
45 coregpm c o r e g i s t r a t i o n . c void coregpm (
46 g e t o f f f i l e c o r e g i s t r a t i o n . c mat r ix<rea l4> g e t o f f f i l e (
47 cc4 c o r e g i s t r a t i o n . c mat r ix<rea l4> cc4 (
48 cc6 c o r e g i s t r a t i o n . c mat r ix<rea l4> cc6 (
49 ts6 c o r e g i s t r a t i o n . c mat r ix<rea l4> t s6 (
50 ts8 c o r e g i s t r a t i o n . c mat r ix<rea l4> t s8 (
51 ts16 c o r e g i s t r a t i o n . c mat r ix<rea l4> ts16 (
52 r e c t c o r e g i s t r a t i o n . c mat r ix<rea l4> r e c t (
53 t r i c o r e g i s t r a t i o n . c mat r ix<rea l4> t r i (
54 resample c o r e g i s t r a t i o n . c void resample (
55 r a n g e f i l t e r f i l t e r i n g . c void r a n g e f i l t e r (
56 r f i l t e r b l o c k f i l t e r i n g . c void r f i l t e r b l o c k (
57 p h a s e f i l t e r f i l t e r i n g . c void p h a s e f i l t e r (
58 g o l d s t e i n f i l t e r i n g . c mat r ix<complr4> g o l d s t e i n (
59 smooth f i l t e r i n g . c mat r ix<rea l4> smooth (
60 smooth f i l t e r i n g . c mat r ix<rea l4> smooth (
61 s p a t i a l p h a s e f i l t f i l t e r i n g . c void s p a t i a l p h a s e f i l t (
62 convbu f fe r f i l t e r i n g . c mat r ix<complr4> convbu f fe r (
63 p h a s e f i l t e r s p e c t r a l f i l t e r i n g . c void p h a s e f i l t e r s p e c t r a l (
64 s p e c t r a l f i l t f i l t e r i n g . c mat r ix<complr4> s p e c t r a l f i l t (
65 a z i m u t h f i l t e r f i l t e r i n g . c void a z i m u t h f i l t e r (
66 b l o c k a z i f i l t f i l t e r i n g . c mat r ix<complr4> b l o c k a z i f i l t (
67 slant2hschwabisch geocode . c void slant2hschwabisch (
68 s lan t2hambigu i t y geocode . c void s lan t2hambigu i t y (
69 s lan t2hrodr iguez geocode . c void s lan t2hrodr iguez (
70 geocode geocode . c void geocode (
71 p r i n t c p u i o r o u t i n e s . c void p r i n t c p u (
72 i n i t t e s t i o r o u t i n e s . c void i n i t t e s t ( )
73 d o i n i t w r i t e i o r o u t i n e s . c bool d o i n i t w r i t e (
74 i n i t w r i t e i o r o u t i n e s . c void i n i t w r i t e (
75 u p d a t e f i l e i o r o u t i n e s . c void u p d a t e f i l e (
76 getanswer i o r o u t i n e s . c void getanswer (
77 readres i o r o u t i n e s . c bool readres (
78 upda teprocesscon t ro l i o r ou t ine s . c void updateprocesscont ro l (
79 checkprocessing i o r o u t i n e s . c void checkprocessing (
80 checkrequest i o r o u t i n e s . c void checkrequest (
81 f i l l c h e c k p r o c e s s i o r o u t i n e s . c void f i l l c h e c k p r o c e s s (
82 f i l l p r o c e s s e d i o r o u t i n e s . c void f i l l p r o c e s s e d (
83 f i l e l i n e s i o r o u t i n e s . c i n t 3 2 f i l e l i n e s (

135



84 ex is ted i o r o u t i n e s . c bool ex is ted (
85 removedat leader i o r o u t i n e s . c void removedat leader (
86 f i l e s i z e i o r o u t i n e s . c i n l i n e u i n t f i l e s i z e (
87 ge tover lap i o r o u t i n e s . c window getover lap (
88 ge tover lap i o r o u t i n e s . c window getover lap (
89 readcoe f f i o r o u t i n e s . c mat r ix<rea l8> readcoe f f (
90 f i l l p r o d u c t i n f o i o r o u t i n e s . c void f i l l p r o d u c t i n f o (
91 asser t i o r o u t i n e s . c void asser t (
92 asser t i o r o u t i n e s . c void asser t (
93 to lower i o r o u t i n e s . c void t o lower ( char ∗s )
94 toupper i o r o u t i n e s . c void toupper ( char ∗s )
95 printWARNING i o r o u t i n e s . h i n l i n e void printWARNING ( )
96 ERROR i o r o u t i n e s . h i n l i n e void ERROR( char ch [ONE27 ] )
97 ERROR i o r o u t i n e s . h i n l i n e void ERROR( const char ∗ f i l e , i n t 3 2 l i n e , char ch [ONE27 ] )
98 WARNING i o r o u t i n e s . h i n l i n e void WARNING( char ch [ONE27 ] )
99 PROGRESS i o r o u t i n e s . h i n l i n e void PROGRESS( char ch [ONE27 ] )

100 INFO i o r o u t i n e s . h i n l i n e void INFO( char ch [ONE27 ] )
101 DEBUG i o r o u t i n e s . h i n l i n e void DEBUG( char ch [ONE27 ] )
102 DEBUG i o r o u t i n e s . h i n l i n e void DEBUG( const char ∗ f i l e , i n t 3 2 l i n e , char ch [ONE27 ] )
103 i n i t i a l i z e o r b i t b k . cc void o r b i t : : i n i t i a l i z e ( const char ∗ f i l e )
104 computecoe f f i c ien t s o r b i t b k . cc void o r b i t : : computecoe f f i c ien t s ( )
105 g e t k l o k h i o r b i t b k . cc void o r b i t : : g e t k l o k h i ( rea l8 t )
106 getxyz o r b i t b k . cc cn o r b i t : : getxyz (
107 getxyzdot o r b i t b k . cc cn o r b i t : : getxyzdot (
108 getxyzddot o r b i t b k . cc cn o r b i t : : getxyzddot (
109 lp2xyz o r b i t b k . cc i n t 3 2 lp2xyz (
110 xyz2orb o r b i t b k . cc i n t 3 2 xyz2orb (
111 xyz2t o r b i t b k . cc i n t 3 2 xyz2t (
112 xyz2lp o r b i t b k . cc i n t 3 2 xyz2lp (
113 e l l 2 l p o r b i t b k . cc i n t 3 2 e l l 2 l p (
114 l p 2 e l l o r b i t b k . cc i n t 3 2 l p 2 e l l (
115 compbaseline o r b i t b k . cc void compbaseline (
116 dumporbit o r b i t b k . cc void o r b i t : : dumporbit (
117 s p l i n e i n t e r p o l o r b i t b k . cc mat r ix<rea l8> s p l i n e i n t e r p o l (
118 showdata o r b i t b k . cc void o r b i t : : showdata ( )
119 main o r b i t b k . cc i n t 3 2 main ( )
120 eq1 doppler o r b i t b k . h i n l i n e rea l8 eq1 doppler ( cn v e l o c i t y , cn dsat P )
121 eq2 range o r b i t b k . h i n l i n e rea l8 eq2 range ( cn dsat P , rea l8 ranget ime )
122 e q 3 e l l i p s o i d o r b i t b k . h i n l i n e rea l8 e q 3 e l l i p s o i d ( cn P, rea l8 semimajora , rea l8 semiminorb )
123 eq1 dopp le r d t o r b i t b k . h i n l i n e rea l8 eq1 dopp le r d t ( cn dsat P , cn v e l o c i t y , cn a c c e r e l a t i o n )
124 shownumberofpoints o r b i t b k . h i n t 3 2 shownumberofpoints ( ) { return numberofpoints ;}
125 main processor . c i n t 3 2 main (
126 hand le inpu t processor . c void hand le inpu t ( i n t argc , char ∗ argv [ ] , i npu t gen &i n p u t g e n e r a l )
127 usage processor . c void usage ( char ∗programname )
128 f i l l p r o d u c t i n f o p r o d u c t i n f o . cc void p r o d u c t i n f o : : f i l l p r o d u c t i n f o (
129 readphase p r o d u c t i n f o . cc mat r ix<rea l4> p r o d u c t i n f o : : readphase (
130 p r o d u c t i n f o p r o d u c t i n f o . h p r o d u c t i n f o ( ) {m u l t i l o o k L =1; mu l t i l ookP =1;} / / r e s t ==0
131 showdata p r o d u c t i n f o . h i n l i n e void showdata ( ) const / / show content
132 compin te r fe ro products . c void compin te r fe ro (
133 compcoherence products . c void compcoherence (
134 sub t r re fpha products . c void sub t r re fpha (
135 sub t r re fpha products . c void sub t r re fpha (
136 subt r refdem products . c void subt r refdem (
137 d insar products . c void d insar (
138 w r i t e a r g read inpu t . c void w r i t e a r g ( const Type argument )
139 read inpu t read inpu t . c void read inpu t (
140 checkgeneral read inpu t . c void checkgeneral (
141 check read f i l es read inpu t . c void check read f i l es (
142 checkcrop read inpu t . c void checkcrop (
143 checkporb i t s read inpu t . c void checkporb i t s (
144 checks lant2h read inpu t . c void checks lant2h (
145 checkunwrap read inpu t . c void checkunwrap(
146 checkgeocode read inpu t . c void checkgeocode(
147 checkcoarsecorr read inpu t . c void checkcoarsecorr (
148 checkf ine read inpu t . c void checkf ine (
149 checkcoregpm read inpu t . c void checkcoregpm (
150 checkcomprefpha read inpu t . c void checkcomprefpha (
151 checksubt r refpha read inpu t . c void checksubt r refpha (
152 checkresample read inpu t . c void checkresample (
153 c h e c k i n t e r f e r o read inpu t . c void c h e c k i n t e r f e r o (
154 checkcoherence read inpu t . c void checkcoherence(

136



155 checkcomprefdem read inpu t . c void checkcomprefdem (
156 checksubtrrefdem read inpu t . c void checksubtrrefdem (
157 c h e c k f i l t r a n g e read inpu t . c void c h e c k f i l t r a n g e (
158 checkdinsar read inpu t . c void checkdinsar (
159 c h e c k f i l t p h a se read inpu t . c void c h e c k f i l t p h a se (
160 c h e c k f i l t a z i read inpu t . c void c h e c k f i l t a z i (
161 se tunspec i f i ed read inpu t . h i n l i n e void se tunspec i f i ed ( char ∗s )
162 s p e c i f i e d read inpu t . h i n l i n e bool s p e c i f i e d ( const char ∗s )
163 f l a t e a r t h referencephase . c void f l a t e a r t h (
164 radarcodedem referencephase . c void radarcodedem(
165 f i l l s l c i m a g e slc image . cc void slc image : : f i l l s l c i m a g e ( const char ∗ f i l e )
166 updateslc image slc image . cc void slc image : : updateslc image (
167 readdata slc image . cc mat r ix<complr4> slc image : : readdata (
168 showdata slc image . h i n l i n e void showdata ( ) const
169 readvolume s tep1rou t ines . c void readvolume (
170 readleader s tep1rou t ines . c void readleader (
171 r e a d n u l l s tep1rou t ines . c void r e a d n u l l (
172 readdat s tep1rou t ines . c void readdat (
173 w r i t e s l c s tep1rou t ines . c void w r i t e s l c (
174 unwraptreeframon unwrap . c void unwraptreeframon(
175 getorb u t i l i t i e s . c void getorb (
176 conver tge to rbou t u t i l i t i e s . c void conver tge to rbou t (
177 solve33 u t i l i t i e s . c void solve33 (
178 solve22 u t i l i t i e s . c mat r ix<rea l8> solve22 (
179 nextpow2 u t i l i t i e s . c u i n t nextpow2(
180 p o l y v a l u t i l i t i e s . c rea l8 p o l y v a l (
181 p o l y v a l u t i l i t i e s . c rea l8 p o l y v a l (
182 p o l y v a l u t i l i t i e s . c mat r ix<rea l4> p o l y v a l (
183 polyval1d u t i l i t i e s . c rea l8 polyval1d (
184 normal ize u t i l i t i e s . c void normal ize (
185 normal ize u t i l i t i e s . c void normal ize (
186 BBparBperp u t i l i t i e s . c void BBparBperp ( rea l8 &B, rea l8 &Bpar , rea l8 &Bperp ,
187 BBhBv u t i l i t i e s . c void BBhBv (
188 Btemp u t i l i t i e s . c i n t 3 2 Btemp (
189 BalphaBhBvBparBperpT10 u t i l i t i e s . c void BalphaBhBvBparBperpTheta (
190 iseven u t i l i t i e s . h i n l i n e bool iseven ( i n t 1 6 w) { return (w+1)%2;}
191 iseven u t i l i t i e s . h i n l i n e bool iseven ( i n t 3 2 w) { return (w+1)%2;}
192 iseven u t i l i t i e s . h i n l i n e bool iseven ( u i n t w) { return (w+1)%2;}
193 isodd u t i l i t i e s . h i n l i n e bool isodd ( i n t 1 6 w) { return w%2;}
194 isodd u t i l i t i e s . h i n l i n e bool isodd ( i n t 3 2 w) { return w%2;}
195 isodd u t i l i t i e s . h i n l i n e bool isodd ( u i n t w) { return w%2;}
196 ispower2 u t i l i t i e s . h i n l i n e bool ispower2 ( u i n t w)
197 Ncoeffs u t i l i t i e s . h i n l i n e i n t 3 2 Ncoeffs ( i n t 3 2 degree )
198 degree u t i l i t i e s . h i n l i n e i n t 3 2 degree ( i n t 3 2 Ncoeffs )
199 remainder u t i l i t i e s . h i n l i n e rea l4 remainder ( rea l4 number , rea l4 d i v i s o r )
200 remainder u t i l i t i e s . h i n l i n e rea l8 remainder ( rea l8 number , rea l8 d i v i s o r )
201 s inc u t i l i t i e s . h i n l i n e rea l4 s inc ( rea l4 x )
202 r e c t u t i l i t i e s . h i n l i n e rea l4 r e c t ( rea l4 x )
203 t r i u t i l i t i e s . h i n l i n e rea l4 t r i ( rea l4 x )
204 onedecimal u t i l i t i e s . h i n l i n e rea l8 onedecimal ( rea l8 x )
205 onedecimal u t i l i t i e s . h i n l i n e rea l4 onedecimal ( rea l4 x )
206 myrect u t i l i t i e s . h i n l i n e matr ix<rea l4> myrect ( const matr ix<rea l4> &X)
207 myhamming u t i l i t i e s . h i n l i n e matr ix<rea l4> myhamming(
208 i n t e r p b i c u b i c u t i l i t i e s . h i n l i n e rea l4 i n t e r p b i c u b i c (
209 normal ize u t i l i t i e s . h i n l i n e rea l4 normal ize ( rea l4 data , rea l8 min , rea l8 max)
210 normal ize u t i l i t i e s . h i n l i n e rea l8 normal ize ( rea l8 data , rea l8 min , rea l8 max)

137



Annex C

Utilities

In this annex the additional software that aids running Doris is described. This additional software is not
required to run Doris, but it is highly recommended to use. We choose to only use freely available packages.

C.1 Packages

The program getorb for automatic retrieval of the Delft precise orbits for ERS1/2. See our web pages for a
link.

The package gv (recommended) or ghostview to view postscript files, generated by plotcpm and plotoffsets ,
and cpx2ps .

The GMT (generic mapping tools). Highly recommended. We generally generate postscripts for visualizing
the phase and amplitude with this program. See also cpxfiddle and cpx2ps .

C.2 Tools

We have developed some utilities for running Doris, and some display tools based on GMT.

C.2.1 Installation of SARtools

After downloading the gzipped, tarred archive of the SARtools, the installation is best done with a Makefile. I
assume you are familiar with ’make’ to compile code. If you are not, find someone who is. (See also annex
B).

1. Use a distinct directory to put the files, e.g.,
mkdir /opt/doris v4.02
cd /opt/Doris v4.02

2. Download the archived SARtools via the download area of our webpages at http://enterprise.lr.tudelft.nl/doris/:
SARtools.tar.gz

3. Expand compresed files: gzip -d SARtools.tar.gz
This leaves a file SARtools.tar

138



4. Extract the files from the archive:
tar -xvf SARtools.tar
Now a subdirectory has been created, SARtools .

Now the compilation of the utilities can start.

1. Compile all utilities and install the executables:
- cd SARtools (inspect/edit the Makefile, set INSTALLDIR)
- make (this should compile the code)
- make install (this installs in /usr/local/bin/)

2. Make sure the Installation directory is in your path. For tcsh users, it should be in your .cshrc file (startup
file). Add it with a (csh) command like:
set path = ( /usr/local/bin/ $path )

C.2.2 run script

This script can generate template input files and directories, and therefor generally speeds up the processing.
If it is installed in a Bin directory (in your path), it can be run from several project directories for uniform
processing. It uses the environment variables EDITOR and PAGER if set.

The basic idea is to start with

run −g

to generate the input, and then to to edit (default with editor vi or EDITOR) the first input file .

run −e1

After you saved the file (located in directory Inputfiles), type:

run −s1

to process (call to doris software) the first input file . The output that goes to stdout can be viewed with

run −v1

(It is redirected to a file in directoy Outinfo). To view the result files that are created by Doris, use

run −r1 ( master ) ;
run −r2 ( s lave ) ;
run −r3 ( products ) ;
run −r4 ( l o g f i l e )

This should be repeated for other steps. Of course this run file is only a helping hand, not the solution to all
your problems. Be careful! Template values aren’t always the best settings. Feel free to improve it.

Usage :
run −s/−e/−v step [− f \ i n p u t f i l e −r f i l e −i d −d ]

/−g [−M master −S slave −B basel ine −R remark −A author ]
/−h

For more help type run -h .

C.2.3 cpxfiddle

With this utility one can fiddle about with binary complex (cpx) files of all kinds of formats (though only pixel
interleaved). Make a cutout, multilook, scale, exponent, subsample, mirror, etc. Now it also supports the

139



generation of SUNraster files for visualization of the phase of complex files (smaller temp files required). It is
written in C++ using a template function.

Input is a complex file, for example the output of Doris, or SLC data. It should be pixel interleaved, i.e., RE,IM,
RE,IM, RE,IM, ... (Almost) all binary pixel interleaved formats are supported.

Output is written to stdout channel (normally your screen) in ascii or binary float format. The binary output
should be redirected to a file or piped to a (GMT) program. Ascii output can best be used to view a small
cutout. Output option (-o) are normal (the file ”as is”), the magnitude, the phase, the real, or the imaginary
part. Further options are making a cutout, multilooking, subsampling, and/or mirroring in the vertical and
horizontal plane.

Cpxfiddle does not handle band interleaved complex data, column major order files, nor non-complex files.
However cpxfiddle might be tricked.

See also cpxfiddle -h and the utility cpx2ps (C.2.4).

SYNOPSIS:
. / c p x f i d d l e −w width [− f i n fo rmat ] [−q output ] [−o out format ]
[−e exp ] [−s scale ] [− l l i n e ] [−L l i n e ] [−p p i x e l ] [−P p i x e l ]
[−S x / y ] [−M x / y ] [−m m i r r o r ] [−c f i l e ] [− r rmin / rmax ] [−B swap ]
[−H bytes ] [−V] [−b ] [−h [ e lp ] ] [−−] [−−ignorenan ] [−− f u l l s t a t ] i n p u t f i l e

Dump content o f complex b inary f i l e to s tdout ,
e i t h e r : as is , magnitude , phase , r e a l or imaginary p a r t .

I npu t f i l e s can be almost any complex f i l e
though not ( yet ) band i n t e r l e a v e d .

Output can be manipulated by :
m u l t i l o o k i n g , subsampling , m i r ro r ing , sca l ing , etc .
This program i s use fu l fo r cropping and d isp lay ing , i n combinat ion
w i th e . g . , GMT, ImageMagick , or xv .
Output format to s tdou t can be b inary .
Care fu l ! on ly pipe or r e d i r e c t t h i s .
( use : ” c p x f i d d l e −h |& more” i n csh

or ” c p x f i d d l e −h 2>&1 | l ess ” i n bash fo r more help . )

C.2.4 cpx2ps

With this utility postscript files from complex data (and binary float data) can be generated, such as the output
of Doris and SLC files.

Various input formats are supported. Options are multilooking, mirroring, plotting the phase, magnitude, real,
and imag part, etc. It has become pretty big.

It calls/requires cpxfiddle (see C.2.3), and GMT subprograms: grd2cpt, grdimage, psscale.

cpx2ps v2 . 1 , FMR software , Ber t Kampes , ( c)1999−2000

PROGRAM:
cpx2ps −− produce var ious encapsulated p o s t s c r i p t code from

complex data f i l e s .

SYNOPSIS:
cpx2ps −w width [− f format==cr4 ] [−q out==mag] [−e exp ==1.0] [−s sc ==1.0]

[− l 1 ] [−L a l l l i n e s ] [−p 1 ] [−P width ] [−M1/1 | −F1 / 1 ]
[−T t i t l e ] [−c cptname==gray ] [−z s ize ==16]
[−o e p s f i l e ] [−G g r d f i l e ] [−C c p t f i l e ]
[−gKSUVZ ] [−h elp ] [−−] c p x f i l e

[ . . . ]

For more info, type: cpx2ps -h |more

140



C.2.5 phasefilt.doris

Program to perform phase filtering from the prompt using Doris. Several methods can be used. For more info
type: phasefilt.doris -h

PROGRAM: p h a s e f i l t . d o r i s f i l t e r mph f i l e using Dor is .

SYNOPSIS:
p h a s e f i l t . d o r i s − l numlines [−o . f i l t e r e d ] [−a 0 .25 ] [−s 2 ]

[−e 3 ] [−b 32] [−m g o l d s t e i n ] [−k f i l e ] [−−] i n f i l e
[ . . . ]

C.2.6 flapjack

Program to make integer linear combinations of interferograms.

PROGRAM: f l a p j a c k p ixe lw ise complex i n t e g e r m u l t i p l i c a t i o n o f a
f l o a t complex f i l e . To be used to make l i n e a r combinat ions , . . .

SEE ALSO: cpxmult . . .

USAGE: f l a p j a c k i n f i l e 1 [ f a c t o r ==2]

EXAMPLE: f l a p j a c k c i n t . raw 3

C.2.7 cpxmult

Program to subtract phase in 2 complex files.

PROGRAM: cpxmult sub t rac t s or adds phase o f two complex f l o a t f i l e s

USAGE: cpxmult i n f i l e 1 i n f i l e 2 [ o u t f i l e [ add ==0] ]

i n f i l e [ 1 2 ] con ta in complex values a+ i b
o u t f i l e con ta ins ( a1+ib1 )∗ conj ( a2+ib2 )

I f add=1 then phase i s added ( not conj ) .

EXAMPLE: cpxmult c i n t . raw c i n t 2 . raw s u b t r a c t . raw

C.2.8 cpxdiv

Program to performs division on 2 complex files. Phase is subtracted by default.

Program : . / cpxdiv d i v i d e s two given complex f l o a t f i l e s

USAGE:
. / cpxdiv i n f i l e 1 i n f i l e 2 [ o u t f i l e [ cn j ==0 ] ]

i n f i l e [ 1 2 ] con ta in complex values a+ i b
o u t f i l e con ta ins ( a1+ ib1 ) / ( a2+ ib2 )

I f cn j =1 then phases are added .
o u t f i l e con ta ins ( a1+ ib1 ) / conj ( a2+ib2 )

EXAMPLE: cpxdiv c i n t . raw c i n t 2 . raw d i v i s i o n . raw

141



C.2.9 cpxconj

Program to take conjugate of a complex file.

Program : . / cpxconj take conjugate o f a given complex f l o a t f i l e

USAGE:
. / cpxconj i n f i l e 1 [ o u t f i l e ]

i n f i l e [ 1 2 ] con ta in complex values a+ i b
o u t f i l e con ta ins conj ( a+ i b )=a−i b

EXAMPLE: cpxconj c i n t . raw c i n t . raw . conj

C.2.10 floatmult

This utility multiplies a (complex) float file by a scalar.

PROGRAM: f l o a t m u l t p i xe lw ise f l o a t m u l t i p l i c a t i o n o f
a ( complex ) f l o a t complex f i l e .
To be used to scale f l o a t f i l e s , or magnitude o f complex f i l e s .

SEE ALSO: cpxmult , f l a p j a c k , c p x f i d d l e . . .

USAGE: f l o a t m u l t i n f i l e 1 [ f a c t o r ==2 . ]

EXAMPLE: f l o a t m u l t c i n t . raw 1.47

C.2.11 wrap

With this utility you can wrap your interferogram to arbitrary interval instead of [-pi, pi). Can be used for
example to make fringes correspond to, e.g., 1 cm displacement.

PROGRAM: wrap wraps f l o a t b inary f i l e to i n t e r v a l [ a , b )

USAGE: wrap i n f i l e [ a b [ o f i l e ] ]

EXAMPLE: wrap in te r fe rogram . raw −4p i 4 p i i n t e r f 4 . raw

defau l t \ o u t p u t f i l e == i n f i l e . wrap
defau l t i n t e r v a l [ a b ) == [−p i p i )

C.2.12 construct dem.sh

This utility downloads, merges and fills voids of SRTM data based on coordinates of your area of interest.
Only basic Linux/Unix commands and GMT are used (so make sure you have GMT installed).

PROGRAM: construct dem . sh ownloads , merges and f i l l s vo ids o f SRTM data based on
coord ina tes o f your area o f i n t e r e s t .

USAGE: construct dem . sh p r o j e c t W E S N SRTM[ 1 | 3 ] [< f t p1> <f t p2> <f t p u s e r> <f t p pass>

EXAMPLE: construct dem . sh nether lands 3.3 7.3 50.7 53.7 SRTM3

OUTPUT: − DEM: final PROJECT .dem
− preview : srtm PROJECT . ps
− Dor is i n p u t : i n p u t . doris PROJECT

142



C.2.13 doris.process-reset.sh

This utility can be used to reset and clean up the processing entries in Doris result files, such as: master.res,
slave.res or interferogram.res, in order to allow re-processing of a step or multiple steps. Basicly, it deletes
any entry starting from the indicated step till to the very end of the result file and updates process control
switches.

USAGE: d o r i s . process−rese t . sh <doris process name> <. res>

EX: d o r i s . process−rese t . sh c o a r s e c o r r e l master s lave . res

d o r i s . process−rese t . sh resample s lave . res

Dor is process names by order :
1 . crop 13. resample
2 . s im ampl i tude 14. i n t e r f e r o
3 . mas te r t im ing 15. comp refphase
4 . f i l t a z i 16. sub t r re fphase
5 . f i l t r a n g e 17. comp refdem
6 oversample 18. subt r refdem
7. c o a r s e o r b i t s 19. coherence
8 . c o a r s e c o r r e l 20. f i l t p h a s e
9 . f i n e c o r e g 21. unwrap

10. t i m i n g e r r o r 22. s lan t2h
11. dem ass is t 23. geocoding
12. comp coregpm 24. d insar

25. <ext ra>

C.3 Completes for tcsh users

Complete commands are used in tcsh shell to complete commands by pressing the TAB key. These completes
can be added to the ones you already have. Simply put them in your resource file, likely .cshrc or .tcshrc.
Possibly in your configuration there is a file ”complete.tcsh” that is sourced from the .cshrc. If you are not
using tcsh, you cannot use them (?) (Find out by the commands ”who am i” and ”finger”.)

complete d o r i s c /−/ ” ( c h q ver ) ” / \
n/−h / ” (<search term>) ” / \
n /∗ / f :∗{ in , IN , d o r i s}∗ /

complete cpx2ps c /−/ ” (w f q e s l L p P T F c z o G C g K S U V Z h m) ” / \
n/− f / ” ( c i2 cr4 cr8 r4 ) ” / \
n/−q / ” ( normal mag phase r e a l imag ) ” / \
n/−T / ” (< t i t l e >) ” / \
n/−c / ” ( cool copper gebco gray haxby hot j e t no green po la r

rainbow red2green r e l i e f topo sealand s p l i t wysiwyg ) ” / \
n/−m/ ” (X XY Y) ” /

complete c p x f i d d l e c /−/ ” (w f q o e s l L p P S M m c V h ) ” / \
n/−c / ” (< f i lename> gray j e t hot cool b e r t ) ” / \
n/− f / ” ( cc1 cuc1 c i2 c i4 cr4 cr8 ) ” / \
n/−q / ” ( normal mag phase r e a l imag ) ” / \
n/−m/ ” (X XY Y) ” / \
n/−o / ” ( a s c i i f l o a t sunras te r uchar ) ” /

143



Annex D

Definitions

In this annex a number of definitions as used by Doris are described. In Section D.2 the baseline repre-
sentations are described, while in Section D.3 the definition of the interferogram is described. Section D.4
describes the definition of the polynomials. And in Section D.5 the use of the pulse repetition frequency and
range sampling rate are discussed. Section D.6 describes a system of 3 equations which is frequently used to
compute the position on the ellipsoid for a certain line, pixel. The way the orbits are interpolated is described
in Section D.7. Finally section D.8 gives some information on the formats of the images.

D.1 Constants

Constants used in the processing can be found in the source files constants.h and refsystems.h. The main
parameters in constants.h are:

const rea l8 SOL = 299792458.; / / speed of l i g h t i n m/ s
const rea l8 EPS = 1e−13; / / smal l number
const i n t 32 NaN = −999; / / Not a Number
const rea l8 PI = 4.∗ atan ( 1 . ) ;

The main parameters in refsystems.h are (actually only WGS is used for now):

const rea l8 WGS84 A=6378137.0; / / semimajor ax i s wgs84
const rea l8 WGS84 B=6356752.3; / / semiminor ax i s wgs84
const rea l8 GRS80 A=6378137.0; / / semimajor ax i s grs80
const rea l8 GRS80 B=6356752.3; / / semiminor ax i s grs80
const rea l8 BESSEL A=6377397.155; / / semimajor ax i s bessel
const rea l8 BESSEL B=6356078.963; / / semiminor ax i s bessel
const rea l8 RADIUS=.5∗ (WGS84 A+WGS84 B ) ; / / f o r sphere pol2car

D.2 Baseline

The basic configuration of InSAR is shown in figure D.1.

There are different representations for the baseline, see Figure D.2.

Conversions between baseline representations:

The baseline parameters can be computed when the statevectors of the points M, S and P (master ,slave and
point on surface) are known. (The distance between the points x and y is denoted by d(x, y); and the sharp

144



Figure D.1: Geometric configuration for InSAR. Ri are the range vectors to the corresponding resolution
element. The statevector of the reference satellite is denoted by ρ1. (h denotes the satellite height, µ the
location angle of the co-registered resolution cell in the interferogram.)

angle between two vectors x and y by ∠(x, y).)

B = d(M, S) (D.1)

B‖ = d(M, P )− d(S, P ) (D.2)

Now the perpendicular baseline has to be computed. The definition states that B⊥ is positive if the slave
satellite is to the right of the slant range line of the master. Which yields for a mountain an increasing phase
from foot to summit(?) We had some trouble finding a simple expression to find out the correct sign but at the
moment we do something like the following.

B⊥
2 = B2 −B‖

2 (D.3)

~r1 = ~M − ~P (D.4)

~r2 = ~S − ~P (D.5)

γ1 = ∠(~P ,~r1) (D.6)

γ2 = ∠(~P ,~r2) (D.7)

sign =

{

−1 , γ1 < γ2
1 , γ1 > γ2

(D.8)

B⊥ = sign

√

B⊥
2 (D.9)

145



Table D.1: Conversion between baseline representations (note that the four quadrant arctangent should be
used).

[Bh, Bv] [B, α] [B⊥, B‖]
[Bh, Bv] – Bh = B cosα Bh = B⊥ cos θ + B‖ sin θ

– Bv = B sin α Bv = B⊥ sin θ −B‖ cos θ
[B, α] α = arctan(Bv/Bh) – α = θ − arctan(B‖/B⊥)

B =
√

B2
h + B2

v – B =
√

B‖
2 + B⊥

2

[B⊥, B‖] B‖ = Bh sin θ −Bv cos θ B‖ = B sin(θ − α) –
B⊥ = Bh cos θ + Bv sin θ B⊥ = B cos(θ − α) –

θ = ∠( ~M,~r1) (D.10)

α = θ − arctan 2(B‖, B⊥) (D.11)

Bh = B cos(α) (D.12)

Bv = B sin(α) (D.13)

D.3 Interferogram

The phase for a certain pixel in a single SLC image i is defined as:

φi ≡ −
4π

λ
ri (D.14)

The complex interferogram minus reference phase is defined as:

I = M · S∗ · R∗ (D.15)

Where:
{.}∗ denotes the complex conjugated;

Figure D.2: Definition of the baseline parameters. (a) parallel/perpendicular; (b) horizontal/vertical; (c) length-
/orientation; Position 1 is the reference position. B‖ > 0 when R1 > R2, where Ri is the corresponding slant
range. The angle α is defined counter-clockwise from the reference satellite (1), starting from the horizontal
at the side of the look direction.

146



· denotes a pointwise multiplication;
I is the complex interferogram;
M is the complex master image;
S is the complex (resampled) slave image;
R is the complex (amplitude ≡ 1) reference phase;
The phase image (of complex interferogram minus reference phase) is defined as:

φ = arctan2(Iimag, Ireal) (D.16)

Where:
arctan2 is the four quadrant arc tangent;
φ is the phase image;
I is the complex interferogram;
Which is equal to (with an ambiguity of 2π)

φI = φM − φS − φR (D.17)

The reference phase is defined as (where r1 denotes the range from the master satellite to a point on the
reference surface)

φR ≡ −
4π

λ
(r1 − r2) = −4π

λ
B‖ (D.18)

Which is the same as

R = Mr · S∗
r (D.19)

Where Mr denotes the phase of a point situated on the reference surface. (of course, in this definition the
phase of the interferogram equals zero if there actually is no topography (and M = Mr).) The values of
the (real valued) reference phase are stored in a 2d-polynomial of certain degree. The subtraction of the
reference phase φ is actually computed as:

I = (M · S∗) · (cosφ− sin φ) (D.20)

because the complex conjugated of the reference phase φ equals:

(aeiφ)∗ = a(cosφ + sin φ)∗
a≡1
= cosφ− sin φ (D.21)

The complex coherence between two images is defined as (see [Touzi et al., 1996]):

γc =
E{M · S∗}

√

E{M ·M∗} ·E{S · S∗}
(D.22)

Where:
E{.} is the expectation;
∗ is the complex conjugated;
γc is the complex coherence;
M is the complex master image;
S is the complex slave image (possibly minus (complex) reference phase: S = S · R∗;
The coherence is defined by |γc|, and its estimator as:

γ̂ =

∣

∣

∣

∣

∣

∣

1
N

∑N
i=0 MiS

∗
i

√

1
N

∑N
i=0 MiM∗

i
1
N

∑N
i=0 SiS∗

i

∣

∣

∣

∣

∣

∣

(D.23)

The correlation between two images is defined by (see [Bähr and Vögtle, 1991]):

Γ =
cov(M, S)

√

var(M)var(S)
=

E{M · S∗} − E{M}E{S∗}
√

(E{M ·M∗} − E{M}E{M∗}) · (E{S · S∗} − E{S}E{S∗})
(D.24)

Thus the mean is first subtracted in comparison to the coherence. The coherence is equal to the correlation
only if E{M} = E{S} = 0.

A problem is that the estimator for the coherence and correlation is biased. For small window sizes its outcome
is too high. This probably also causes the problems in the coarse coregistration, where the most likely offset
is not selected based on its correlation value but on its consistency.

147



D.4 Polynomials

A 1d-polynomial is defined as:

f(x) =

d
∑

i=0

αix
i (D.25)

A 2d-polynomial is defined as:

f(x, y) =
d

∑

i=0

i
∑

j=0

αi−j,jx
i−jyj (D.26)

Thus the order of the coefficients (line,pixel) is independent of degree d:
d=0: A00 (1)
d=1: A10A01 (2, 3)
d=2: A20A11A02 (4, 5, 6)
d=3: A30A21A12A03 (7, 8, 9, 10)

Thus the number of coefficients (unknowns in least squares estimation) equals for a 2d-polynomial of degree
d:

1

2
((d + 1)2 + d + 1) (D.27)

And the degree of a polynomial with N coefficients is equal to:

d =
1

2
(int32(

√
1 + 8N)− 1)− 1 (D.28)

D.4.1 Computation of coefficients

Suppose we have 2d data f(l,p), l[1,25000] p[1,5000] and we want to estimate a 2d polynomial D.26 with these
data. The system of equations looks like











f(l1, p1)
f(l2, p2)
...
f(lN , pN )











=











1 l1 p1 l21 l1p1 · · · pd
1

1 l2 p2 l22 l2p2 · · · pd
2

...
1 lN pN l2N lNpN · · · pd

N

































α00

α10

α01

α20

α11

...
α0d























(D.29)

The convention used in the Doris software is that we first normalize the data to avoid numerical instabilities
(see source utilities.[hc] ). The maximum coordinates are that of the original master (stored in the result
file of the master image, typically 25000 lines and 5000 range pixels). The coordinates are rescaled to the
interval [-2,2].

l[a, b]→ l[−2, 2]⇔ l→ 2
l − a

.25(b− a)
− 2 (D.30)

(Another way, perhaps a better one (?), would be to make the data zeromean, unit standard deviation) The
estimated coefficients thus correspond to the normalized data. For evaluation, the data has to be normalized
by the same factors a,b. Normally the information from the master.originalwindow.linelo etc. are used, e.g., for
the coregistration and the reference surface polynomial. These numbers can be found in the master result
file after the step readfiles at place number of lines original of datafile. A function normalize is called to do
the normalization, so it is easy to change the implementation to a different normalization. It has been noticed
that for higher order polynomials the normalization factor is very important to obtain a stable estimate.

148



D.4.2 Evaluation of polynomials

Evaluation of the polynomials should be done by normalizing the data as indicated above. Something like:

const rea l8 const rea l8 minL = master . o r i g ina lw indow . l i n e l o ;
const rea l8 maxL = master . o r i g ina lw indow . l i n e h i ;
const rea l8 minL = master . o r i g ina lw indow . p i x l o ;
const rea l8 maxL = master . o r i g ina lw indow . p i x h i ;
m a t r i x r ea l 4 (N, 1 ) l \ ax i s = l inenumbers ;
normal ize ( l \ ax i s ) ;
m a t r i x r ea l 4 f = po l yva l ( l \ ax is , p\ ax is , c o e f f i c i e n t s , [ degree ] ) ;

NOTE: It is faster to evaluate a polynomial on a grid than point by point.

D.5 (SAR) System parameters

D.5.1 Azimuth

PRF

The actual pulse repetition frequency (PRF) is computed based on the data in the SLC leader file. However,
the ’actual’ value, as read from the leader file, is used (after private communications with ESA helpdesk). It is
defined as:

PRF =
Nl − 1

dta
(D.31)

Where:
PRF is the pulse repetition frequency in Hz.
Nl is the total number of lines (lastline - firstline).
dta is the azimuth time of the last line minus the azimuth time of the first line, or the acquisition time of the
image.
This equation, and the following, can be easily verified by substitution of the values for the first/last line/pixel.

line number

The azimuth time of a certain line (number) tal is computed as:

tal = ta1 +
(l − 1)

PRF
(D.32)

Where:
ta1 is the azimuth time to line 1 (first line).

And the line number l, given a certain azimuth time ta, can be computed as:

l = 1 + PRF(ta − ta1) (D.33)

Where:
ta1 is the azimuth time to line 1 (first line).

149



Doppler centroid

The Doppler centroid frequency (azimuth) is computed as a second degree polynomial:

fDC = α0 + α1

p

RSR
+ α2

[ p

RSR

]2

(D.34)

Where:
p is the pixel number starting at 0.
αi is read from the leader file.
In the master result file it are the variables (e.g.):

Xt rack f DC constan t (Hz , ea r l y edge ) : 117.3210000
X t r ack f DC l i nea r (Hz / s , ea r l y edge ) : 72338.0000000
Xt rack f DC quadra t i c (Hz / s / s , ea r l y edge ) : −455000000.00000

This frequency is used in the azimuth filtering, and in the resampling. It should also be used if the complex
SLC data is harmonically oversampled (as is done in the range filtering routine), but we did not implement this
yet. But, for ‖ fDC ‖< 150 Hz this should not have any effect (assuming PRF-ABW=300Hz).

Since for a signal f(t) with Fourier transform F(ω)

f(t)
FT←→ F (ω) (D.35)

ejω0tf(t)
FT←→ F (ω − ω0) (D.36)

(D.37)

The azimuth spectrum of a SLC image processed on a certain Doppler frequency fDC (spectrum shifted to
this frequency) can be shifted back to zero by multiplication in the space domain by the term

e−j2π
fDC
PRF

line (D.38)

(See also any signals and systems book, or e.g., [Geudtner, 1996].) The spectrum can be shifted back to the
original doppler centroid frequency by multiplication by (after e.g., interpolation):

ej2π
fDC
P RF

line′

(D.39)

Proper care should be taken to get the correct line number in both situations.

D.5.2 Range

RSR

The range sampling rate (RSR) is defined as:

RSR = 0.001
Np− 1

dtr
(D.40)

Where:
RSR is the range sampling rate in MHz.
Np is the number of (range) pixels.
dtr is the zero Doppler two-way time to the last pixel minus the range time to the first pixel in milliseconds.

150



pixel number

The pixel number p [1:Np], given a certain one-way range time ta, can be computed as:

p = 1 + RSR · 2(tr − tr1) (D.41)

Where tr1 is also one-way.

The one-way range time for a given pixel (number) p can be computed as:

tr = tr1 +
(p− 1)

2RSR
(D.42)

Where:
RSR is in Hz.
ta1 is the range time to pixel 1 (first pixel) in seconds.

The range is of course equal to:

r = tr ∗ c (D.43)

Where:
c is the speed of light (constants.h: 299792458. m/s).

D.6 Doppler, range and ellipsoid equations

The following three equations are used regularly throughout the software to compute the point P that corre-
sponds to a certain line and pixel in the master or slave image (see also [Geudtner, 1996]). Precise orbits are
necessary.

1. Doppler: The point P at the surface lies perpendicular to the orbit due to zero Doppler processing
(otherwise this equation has to be adapted with a slant angle).

2. Range: The geometrical distance to P on the surface is equal to the speed of light times the range time.

3. Ellipsoid: Force the point to lie on an ellipsoid.

The equations for the point P on the ellipsoid and the satellite S in its orbit are (where x denotes (x,y,z)):

dx = x− xs (D.44)

E1 : ẋs · dx = 0 (D.45)

E2 : dx · dx− (vlighttrange)2 = 0 (D.46)

E3 :
x2

a2
+

y2

a2
+

z2

b2
− 1 = 0 (D.47)

To compute the coordinates of a point P on the ellipsoid, corresponding with line l and pixel p in the master
image the following has to be done. First the position of the satellite has to be computed (assumed exact)
based on the line number and PRF (l to azimuth time to interpolated position), and the velocities for this
time (by interpolation). Also the range time corresponding to the pixel number is computed (based on RSR,
assumed exact).

Next the set of equations is used to solve for P(x,y,z). This is done iteratively by linearization, which requires
the derivative of the equations to x and approximate values for the unknowns (the coordinates of the center
(φ, λ) given in the SLC leader file, converted to xyz on a sphere).

dx = x− xs (D.48)

151









δE1

δx
δE1

δy
δE1

δz
δE2

δx
δE2

δy
δE2

δz
δE3

δx
δE3

δy
δE3

δz






=





ẋs ẏs żs

2 dx 2 dy 2 dz
2x
a2

2y
a2

2z
b2



 (D.49)

Solving this exactly determined system of 3 equations yields the next solution dx1 and the new values for the
unknowns become dx1 = dx0 + dx1 which are used to compute dy1 and dA1. The solution is updated until
convergence (∆x < 1e-6 meters).

dyi = dAi dxi (D.50)

Where:
dy contains the observations. (set of equations)
dx contains the unknowns (coordinates of P). dA contains the partials (evaluated for previous solution).

To solve for the azimuth time if the coordinates of a point on the ground is known, only the Doppler D.45
equation needs to be used. the derivative with respect to azimuth time of this equation equals

δE1

δta
= ẍs · dx − ẋẋ (D.51)

The solution is equal to (use approximate solution ta0 to evaluate these expressions).

ta1 =
−E1

δE1

δta

(D.52)

and

ta1 = ta0 + ta1 (D.53)

The solution is updated until convergence (∆t < 1e-10 seconds).

The range time is then computed as in equation D.46

tr =

√

(x− xs)2

c
(D.54)

D.7 Orbit interpolation

We assume the precise orbits are given some time before the first and after the last azimuth line. Normally
we use getorb to obtain satellite ephemerides with a time interval of 1 second (approximately 21 datapoints
for a frame of typical 15 seconds).

Natural cubic splines are then used to interpolate the orbit. Because these splines do not behave very well
at the edges we use some points before/after the first/last line. Note that the x, y, and z coordinate are
interpolated independently.

The Delft precise orbits and the getorb package are used to obtain the points. Note that getorb also interpo-
lates based on 30 second ephemerides.

We would like to test if setting the data interval to e.g. 30 second gives better results. A test can be easily
performed for the computation and modeling of the reference phase. Assume that this phase can be accu-
rately modeled by a 2d polynomial of degree 5. Now first let the precise orbit be given with a data interval of
1 second. Use step REFPHA to model the reference phase based on 501 points distributed over the scene.
Next, let the precise orbit be given with a data interval of 30 seconds and again model the reference phase. In
the log file some statistics on the error of the model w.r.t. the computed reference phase is given, which can
be used to find out which orbit gives a better model. In both cases use at least 6 points before and 6 points
after the last point in the frame.

152



The interpolation is done as follows, compare with numerical recipes in c (splint routine). First the piecewise
polynomial coefficients are computed by solving a tridiagonal system and stored. For interpolation, the correct
coefficients (interval) are read and the polynomial is evaluated.

Because we know that in our situation (with getorb) we always have ephemerides with a constant time interval
we could speed up the computations. Also the fact that this interval equals 1 can be easily exploited. However,
we decided not to exploit these features because we like to stay independent from a particular orbit format.
(and these computations can be done fast anyhow.)

The velocity can be interpolated by the derivative of the piecewise polynomials: [see source code or numerical
recipes].

The accerelation can be interpolated by the second derivative of the piecewise polynomials: [see source code
or numerical recipes].

If less points are known (than the typically 21 of getorb) (one wants to use the SLC datapoints for a quick look
analysis for example) then this kind of interpolation probably does not work very well. In future we will include
an option to interpolate by a low degree polynomial which is estimated (least squares) from the datapoints.
Getting the derivates at any point is straightforward in this case.

As a satellite moves very smoothly, a polynomial of a lower degree might even be nearer to the ’true’ orbit
then a piecewice polynomial. In future we want to model the baseline (Bh, Bv) as a function of azimuth time
by a first? order polynomial. This probably is more efficient than computing the positions of the sensors each
time the baseline is required. We do not know what the best way is to do this.

D.8 Format of the products

Start at (azimuth) line 1, (range) pixel 1 (near range). Data is written line by line (major row order). We give
the binary data a .raw extension.

The complex interferogram is written pixel interleaved (see D.2). Each complex pixel is written as 4 byte real,
4B imaginary part.

Table D.2: The way complex files (SLC data, resampled slave, complex interferogram) are stored on disk.
Also refered to as mph format (magnitude phase). This is a major row order stored, pixel interleaved file with
2 (float 4B) canals (real,imag).

1st pixel 2nd pixel ... pixel P

1st line Real,Imag Real,Imag ... Real,Imag
2nd line Real,Imag Real,Imag ...
3rd line Real,Imag Real,Imag
... ...
line L Real,Imag Real,Imag ... Real,Imag

After unwrapping of the phase the result can no longer be stored as a complex value, because a complex
number only can distinguish between phase values in the principal interval ±π. Therefor a new format is
used/will be used. Either the unwrapped phase is simply stored in a 4B float file, similar to table D.2 without
the imaginary part (as are other files, like the phi, lambda, and height matrices after geocoding), or a hgt file
is generated (see table D.3.

Particularly after unwrapping the conventions we use for this file are as follows. The amplitude (equal to that
of complex intererogram) and the unwrapped phase is stored for each pixel. If there is no unwrapped phase,
the wrapped phase is stored, and the amplitude is set to 0 for that pixel. (I would prefer setting the phase to
0, and keeping the amplitude, but we selected this format to keep in line with other software.) The amplitude
is stored, while it does not change after unwrapping, to keep all information in one file.

153



Table D.3: Format of a hgt (height) file. (unwrapped complex interferogram and others) Actually is a major row
order, band interleaved data, with 2 float (4B) canals (amplitude phase).

1st pixel 2nd pixel ... 1st pixel 2nd pixel ...

1st line Amplitude Amplitude ... Phase Phase ...
2nd line Amplitude Amplitude Phase Phase ...
3rd line Amplitude Amplitude ...
... ...
line L Amplitude Amplitude ... Phase Phase ...

Computations are done in general in the original master system. (no matter if cut-out or multilooked.)

Time system (orbit) is in seconds of day. Ephemerides orbit system is more or less WGS84.

Matrix class:
A matrix is starts at 0,0 etc.

Offset:
Offset for a certain point is defined as: coordinate in slave system = coordinate in mastr system + offsets.

154



Annex E

Matrix class

The template matrix class (called matrixbk ) that is provided with the Doris software can be used for other
applications as well. Please refer to the file matrixbk test.c for an example how to use this class in your own
programs. (I do not claim it is the best/fastest implementation ever, i just find it very useful, and the routines
are checked and working fine.) The Makefile shows how to compile it. Also see Annex B.

The data has to be linear in memory for the VECLIB library, thus this has been done and it used in some other
functions to speed them up (see the constructor how this is done).

If the VECLIB library is not used, (slower) internal functions for FFT and matrix multiplication are used. If
you like to use your own FFT, only the function four1d has to be changed since the 2d function call this one
sequentially.

If the LAPACK library is not used, (slower) internal functions for cholesky are used.

The matrix class is used as a container class for (part of) the images. It has not been defined as a class
’radarimage’ because in that case it would have been difficult to perform operations on the images if they
didn’t fit in the memory as a whole. However, it might be a good idea to define functions such as phasefilter
for the matrix class. This would result in calls like:

mat r i x < complex<rea l4> > BUFFERMASTER; / / Conta iner
fo r ( i =0; i<NUMBUFFERS; ++ i )

{
/ / Read i n phase image

BUFFERMASTER. r e a d f r o m f i l e ( f i lename , windowsize , f o r m a t f l a g ) ;
/ / f i l t e r t h i s b u f f e r

BUFFERMASTER. p h a s e f i l t e r ( parameters ) ;
/ / Wr i te to \ o u t p u t f i l e

BUFFERMASTER. w r i t e t o f i l e ( f i lename2 , f o r m a t f l a g ) ;
}

which seems very readable and maintainable (only the member function ”phasefilter” of the matrix class has
to be changed if something has to be added).

If you do not have access to LAPACK, but you have a different library, we advice you to use that one. The
Cholesky factorization as implemented internally has not been optimized in any way. The same holds for the
VECLIB library, particularly the FFT routines. We have included the code for a Cooley-Turkey algorithm, but it
handles the data quite slowly, compared to an optimized library.

E.1 Matrix class functions

The functions in the matrix class are obtained by:

˜ / . b in / ctags −−c−types= f −x mat r ixbk .∗ | cut −c1−12,50−600

155



0 a l l o c a t e void matr ix<Type > : : a l l o c a t e ( u i n t numlines , u i n t numpixels ) / / a l l o c a t o r
1 checkindex void matr ix<Type > : : checkindex ( u i n t l i ne , u i n t p i x e l ) const
2 clean void matr ix<Type > : : clean ( ) / / sets 2 zero
3 conj void matr ix<Type > : : conj ( )
4 conj mat r ix<Type> conj ( const matr ix<Type> &A)
5 c o r r e l a t e mat r ix<real4> c o r r e l a t e ( const matr ix<Type> &A, mat r ix<Type> Mask )
6 diagxmat mat r ix<Type> diagxmat ( const matr ix<Type> &diag , const matr ix<Type> &B)
7 dotd i v mat r ix<Type> dotd i v ( const matr ix<Type> &A, const matr ix<Type> &B)
8 dotmul t mat r ix<Type> dotmul t ( const matr ix<Type> &A, const matr ix<Type> &B)
9 dumpasc void dumpasc ( const char ∗ f i l e , const matr ix<Type>& A)

10 f f t s h i f t f r iend void f f t s h i f t ( mat r ix<Type> &A)
11 f l i p l r void matr ix<Type > : : f l i p l r ( )
12 f l i p u d void matr ix<Type > : : f l i p u d ( )
13 getcolumn matr ix<Type> matr ix<Type > : : getcolumn ( u i n t p i x e l ) const
14 getdata mat r ix<Type> matr ix<Type > : : getdata ( window win ) const
15 getrow matr ix<Type> matr ix<Type > : : getrow ( u i n t l i n e ) const
16 i f f t s h i f t f r iend void i f f t s h i f t ( mat r ix<Type> &A)
17 i n i t i a l i z e void matr ix<Type > : : i n i t i a l i z e ( u i n t numlines , u i n t numpixels )
18 i s v e c t o r bool matr ix<Type > : : i s v e c t o r ( ) const
19 l i n e s u i n t mat r ix<Type > : : l i n e s ( ) const / / r e t u r n number o f l i n e s
20 matTxmat mat r ix<Type> matTxmat ( const matr ix<Type> &A, const matr ix<Type> &B)
21 mat r i x mat r ix<Type > : : mat r i x ( ) / / cons t r uc t o r (0 arg )
22 mat r i x mat r ix<Type > : : mat r i x ( u i n t l i nes , u i n t p i x e l s )
23 mat r i x mat r ix<Type > : : mat r i x ( const matr ix<Type>& A)
24 mat r i x mat r ix<Type > : : mat r i x ( window win , const matr ix<Type>& A)
25 matxmatT matr ix<Type> matxmatT ( const matr ix<Type> &A, const matr ix<Type> &B)
26 max Type max( const matr ix<Type> &A)
27 max Type max( const matr ix<Type> &A, u i n t& l i ne , u i n t& p i x e l )
28 mean rea l8 mean ( const matr ix<Type> &A)
29 min Type min ( const matr ix<Type> &A)
30 min Type min ( const matr ix<Type> &A, u i n t& l i ne , u i n t& p i x e l )
31 m ul t i l ook matr ix<Type> m ul t i l ook ( const matr ix<Type> &A, u i n t fac to rL , u i n t fac to rP )
32 mypow void matr ix<Type > : :mypow( Type s )
33 myswap f r iend void myswap ( mat r ix<Type> &A, mat r ix<Type> &B)
34 operator != bool matr ix<Type > : : operator != ( Type sca la r ) const
35 operator != bool matr ix<Type > : : operator != ( const matr ix<Type> &A) const
36 operator ∗ matr ix<Type> operator ∗ ( const matr ix<Type>& A, const matr ix<Type>& B)
37 operator ∗ matr ix<Type> operator ∗ ( const matr ix<Type>& A, Type sca la r )
38 operator ∗ matr ix<Type> operator ∗ ( Type scalar , const matr ix<Type> &A)
39 operator ∗= matr ix<Type>& matr ix<Type > : : operator ∗= ( Type sca la r )
40 operator ∗= matr ix<Type>& matr ix<Type > : : operator ∗= ( const matr ix<Type> &A)
41 operator + matr ix<Type> operator + ( const matr ix<Type>& A, const matr ix<Type>& B)
42 operator + matr ix<Type> operator + ( const matr ix<Type>& A, Type sca la r )
43 operator += matr ix<Type>& matr ix<Type > : : operator += ( const matr ix<Type>& A)
44 operator += matr ix<Type>& matr ix<Type > : : operator += ( Type sca la r )
45 operator − matr ix<Type> operator − ( const matr ix<Type>& A, const matr ix<Type>& B)
46 operator − matr ix<Type> operator − ( const matr ix<Type>& A, Type sca la r )
47 operator − matr ix<Type> operator − ( const matr ix<Type>& A)
48 operator −= matr ix<Type>& matr ix<Type > : : operator −= ( const matr ix<Type>& A)
49 operator −= matr ix<Type>& matr ix<Type > : : operator −= ( Type sca la r )
50 operator / mat r ix<Type> operator / ( const matr ix<Type>& A, Type sca la r )
51 operator / mat r ix<Type> operator / ( const matr ix<Type>& A, const matr ix<Type>& B)
52 operator /= mat r ix<Type>& matr ix<Type > : : operator /= ( Type sca la r )
53 operator /= mat r ix<Type>& matr ix<Type > : : operator /= ( const matr ix<Type> &A)
54 operator << f r iend ostream& operator << ( ostream& f i l e , const matr ix<Type>& A)
55 operator = matr ix<Type>& matr ix<Type > : : operator = ( const matr ix<Type>& A)
56 operator == bool matr ix<Type > : : operator == ( Type sca la r ) const
57 operator == bool matr ix<Type > : : operator == ( const matr ix<Type> &A) const
58 operator >> f r iend i s t ream& operator >> ( is t ream& f i l e , mat r ix<Type>& A)
59 operator [ Type∗ matr ix<Type > : : operator [ ] ( u i n t l i n e ) const
60 operator ( ) Type& matr ix<Type > : : operator ( ) ( u i n t l i ne , u i n t p i x e l ) const
61 operator ( ) mat r ix<Type> matr ix<Type > : : operator ( ) ( window win ) const

156



62 operator ( ) mat r ix<Type> matr ix<Type > : : operator ( ) ( u i n t l0 , u i n t lN , u i n t p0 , u i n t pN) const
63 p i x e l s u i n t mat r ix<Type > : : p i x e l s ( ) const / / r e t u r n number o f p i x e l s
64 r e a d f i l e f r iend void r e a d f i l e ( mat r ix<Type> &Resul t , const char ∗ f i l e ,
65 res i ze void matr ix<Type > : : r es i ze ( u i n t l1 , u i n t p1 )
66 setcolumn void matr ix<Type > : : setcolumn ( u i n t p i xe l , const matr ix<Type> &COLUMN)
67 setcolumn void matr ix<Type > : : setcolumn ( u i n t p i xe l , Type sca la r )
68 setdata void matr ix<Type > : : setdata ( Type w) / / sets 2 w
69 setdata void matr ix<Type > : : setdata ( u i n t l1 , u i n t p1 , const matr ix<Type>& A)
70 setdata void matr ix<Type > : : setdata ( window winin , const matr ix<Type> &A, window winA )
71 setdata void matr ix<Type > : : setdata ( const matr ix<Type> &A, window winA )
72 setrow void matr ix<Type > : : setrow ( u i n t l i ne , const matr ix<Type> &LINE )
73 setrow void matr ix<Type > : : setrow ( u i n t l i ne , Type sca la r )
74 showdata void matr ix<Type > : : showdata ( ) const / / show a l l data i n mat r i x
75 s i ze u i n t mat r ix<Type > : : s i ze ( ) const / / r e t u r n nsize
76 sqr mat r ix<Type> sqr ( const matr ix<Type> &A)
77 sq r t f r iend matr ix<Type> sq r t ( const matr ix<Type> &A)
78 sum matr ix<Type> sum ( const matr ix<Type> &A, i n t 32 dim )
79 w r i t e f i l e f r iend void w r i t e f i l e (
80 w s h i f t f r iend void w s h i f t ( mat r ix<Type> &A, i n t 32 n )
81 ˜ mat r i x mat r ix<Type > : : ˜ mat r i x ( )

157



Annex F

Adding a module

In this annex a description is given how to add a module to the Doris software.

First get general idea of the structure of the software. (source2html?).

It is preferred to stay in same format as us.

General:

1. Read input cards and parameters for your module.

2. Add your module to the big selecting switch in main.

3. Implement your module, let in result file the output section end with same string as the other modules
(END.. NORMAL).

4. Documentation (author date description, for users and code developers)

5. Email the description and the total source to the owner of the mailinglist doris users@tudelft.nl. And if
approved, we will include your functions in the next version of Doris.

F.1 Formats

The example source code explains which rules for commenting I generally follow.

0 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
1 ∗ ts16 ∗
2 ∗ ∗
3 ∗ t r uncated s inc 16 po in ts ∗
4 ∗ ∗
5 ∗ i npu t : ∗
6 ∗ − x−ax is ∗
7 ∗ output : ∗
8 ∗ − y= f ( x ) ; f unc t i on evaluated at x ∗
9 ∗ ∗

10 ∗ Ber t Kampes , 16−Mar−1999 ∗
11 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
12 matr ix<real4> ts16 (
13 const matr ix<real4> &x )
14 {
15 # i f d e f DEBUG
16 DEBUG( ” ts16 . ” ) ;
17 i f ( x . p i x e l s ( ) != 1)

158



18 ERROR( ” ts16 : standing vec tors only . ” ) ;
19 # end i f
20 matr ix<real4> y ( x . l i n e s ( ) , 1 ) ;
21 for ( reg i s te r i n t 32 i =0; i<y . l i n e s ( ) ; i ++)
22 y ( i , 0 ) = s inc ( x ( i , 0 ) ) ∗ r ec t ( x ( i , 0 ) / 1 6 . ) ;
23 return y ;
24 } / / END ts16

• start routine a block with date/author/description/input/output;

• end routine met // END routinename;

• no block comments inside the function, only things like:
// ====== Comment on block ======
// Comment on something smaller

Indenting is done with 2 spaces, with the curly braces as shown below.

i f ( expression )
{

act ion1 ;
ac t i on2 ;

}

You can display information (depending on the value of the variable displevel) with the functions:

DEBUG( char [ONE27 ] ) ;
INFO( char [ONE27 ] ) ;
PROGRESS( char [ONE27 ] ) ;
WARNING( char [ONE27 ] ) ;
ERROR( char [ONE27 ] ) ;

F.2 Adding a Step

Adding a new step is not intended to be necessary. The only thing that needs to be added are modules
(methods) in pre-defined steps. However we will explain what you will have to change if you want to add a
new step.

In file readinput.h:

1. you will have to add a const for the new step which is later stored in the process array;

2. also a struct has to be made to store the variables of this new step. (method selector, output file name,
window sizes, etc.);

3. the prototype of the function readinput should be augmented with this new struct.

In the file readinput.c:

1. function readinput augment with new struct;

2. (only)process card, define new keyword for this step;

3. add reading of parameters into defined inputstruct by new keywords.

In file ioroutines.c: (only minor adding)

159



1. routine: doinitwrite: add new step

2. routine: initwrite: process control

3. routine: updateprocesscontrol: check for string

4. routine: checkprocesscontrol: check for string

5. routine: fillcheckprocesscontrol: check for string

6. routine: fillprocessed: check for string

In file processor.c:

1. add definition of new struct,

2. readinput augment with new struct,

3. add in big switch what to do if new step is requested.

General:

• document what you did, new keywords and arguments, new process control flag .

• how does the result file has to end? ”* END filtphase: NORMAL”

• what strings in the result file are used later in the program?

• email to owner-doris users@tudelft.nl.

160


