next up previous contents
Next: Bibliography Up: GEOCODE Previous: Output Description   Contents

Implementation

Known are the heights of each pixel in the master (line,pixel) system. The point P(x,y,z) corresponding to a (line,pixel) is computed with the 3 equations (see Annex D) in such a way that it lies on an ellipsoid of height h above the refernce ellipsoid. When these coordinates are known, the equations of Bowring are used to transform them to an ellipsoid system $ (\phi,\lambda,h)$. The semimajor axis is denoted by a, and the semiminor axis is denoted by b. The squared first eccentricity by:

$\displaystyle e^2 = {a^2-b^2\over a^2}$ (1)

The squared second eccentricity by

$\displaystyle e'^2 = 1-e^2 = {a^2-b^2\over b^2}$ (2)


$\displaystyle r$ $\displaystyle =$ $\displaystyle \sqrt{x^2+y^2}$ (3)
$\displaystyle \nu$ $\displaystyle =$ $\displaystyle \arctan_2(z \cdot a),(r \cdot b))$ (4)
$\displaystyle sin3$ $\displaystyle =$ $\displaystyle \sin^3\nu$ (5)
$\displaystyle cos3$ $\displaystyle =$ $\displaystyle \cos^3\nu$ (6)
       
$\displaystyle \phi$ $\displaystyle =$ $\displaystyle \arctan_2((z + e'^2 \cdot b \cdot sin3),(r - e^2 \cdot a \cdot cos3))$ (7)
$\displaystyle \lambda$ $\displaystyle =$ $\displaystyle \arctan_2(y,x)$ (8)
$\displaystyle N$ $\displaystyle =$ $\displaystyle {a \over \sqrt{1 - e^2 \sin^2\phi}}$ (9)
$\displaystyle h$ $\displaystyle =$ $\displaystyle {r\over\cos\phi} - N$ (10)


next up previous contents
Next: Bibliography Up: GEOCODE Previous: Output Description   Contents
Leijen 2009-04-14